yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How volume changes from changing dimensions


3m read
·Nov 11, 2024

So, I have a rectangular prism here and we're given two of the dimensions. The width is two, the depth is three, and this height here, we're just representing with an h. What we're going to do in this video is think about how the volume of this rectangular prism changes as we change the height.

So, let's make a little table here. So, let me make my table. This is going to be our height, and this is going to be our volume (V for volume).

So, let's say that the height is five. What is the volume going to be? Pause this video and see if you can figure it out.

Well, the volume is just going to be the base times height times depth, or you could say it's going to be the area of this square. So, it's the width times the depth, which is 6, times the height. So, that would be 2 * 3 * 5.

So, 2 * 3 * 5, which is equal to 6 * 5, which is equal to 30.

30 cubic units! We're assuming that these are given in some units, so this would be the units cubed.

All right, now let's think about it. If we were to double the height, what is going to happen to our volume? So, if we double the height, our height is 10. What is the volume? Pause this video and see if you can figure it out.

Well, in this situation, we're still going to have 2 * 3. 2 * 3 * our new height times 10. So now, it's going to be 6 * 10, which is equal to 60.

Notice, when we doubled the height, if we just double one dimension, we are going to double the volume.

Let's see if that holds up. Let's double it again. So, what happens when our height is 20 units? Well, here our volume is still going to be 2 * 3 * 20.

2 * 3 * 20, which is equal to 6 * 20, which is equal to 120.

So, once again, if you double one of the dimensions (in this case, the height), it doubles the volume. You could think of it the other way: if you were to have volume go from 120 to 60.

Now, let's think about something interesting. Let's think about what happens if we double two of the dimensions. So let's say, so we know. I'll just draw these really fast.

We know that if we have a situation where we have 2 by 3 and this height is five, we know the volume here is 30, 30 cubic units. But now, let's double two of the dimensions. Let's make this into a 10 and let's make this into a four.

So, it's going to look like this, and then this is going to be a four. This is still going to be a three, and our height is going to be a 10.

So, it's going to look something like this. So, our height is going to be a 10. I haven't drawn it perfectly to scale, but hopefully, you get the idea.

So, this is our height at 10. What is the volume going to be now? Pause this video and see if you can figure it out.

Well, 4 * 3 is 12, and 12 * 10 is 120.

So, notice when we doubled two of the dimensions, we actually quadrupled our total volume. Think about it. Pause this video and think about why did that happen.

Well, if you double one dimension, you double the volume. But here, we're doubling one dimension and then another dimension, so you're multiplying by two twice.

So think about what would happen if we doubled all of the dimensions. How much would that increase the volume? Pause the video and see if you can do that on your own.

In general, if you double all the dimensions, what does that do to the volume? Or if you have all of the dimensions, what does that do to the volume?

More Articles

View All
Introduction to real gases | Intermolecular forces and properties | AP Chemistry | Khan Academy
In several other videos, we have talked about the ideal gas law, which tells us that pressure times volume is going to be equal to the number of moles times the ideal gas constant times the temperature measured in Kelvin. Now, in all of our studies of the…
Multivariable chain rule and directional derivatives
So in the last video, I introduced the vector form of the multivariable chain rule. Just to remind ourselves, I’m saying you have some kind of function f, and in this case, I said it comes from a 100-dimensional space. You might imagine, well, I can’t im…
Introducing Khanmigo Teacher Mode
This right over here is an exercise about the Spanish-American War and AP American history on Khan Academy. We start off in student mode and notice if the student asks for an explanation, it doesn’t just give the answer. It does what a good tutor would do…
Selective incorporation | Civil liberties and civil rights | US government and civics | Khan Academy
Let’s talk a little bit about selective incorporation. So you are already likely familiar that the first ten amendments of the United States Constitution are the Bill of Rights. Bill of Rights, and especially the first eight of these, are all about protec…
Theravada and Mahayana Buddhism | World History | Khan Academy
What I’d like to do in this video is talk about the major schools of Buddhism as it is practiced today. It can be broadly divided into Theravada Buddhism, which means “school of the elder monks,” and Mahayana Buddhism, which means “great vehicle.” Maha me…
One, Two, Three Bites, You’re Out | Wicked Tuna: Outer Banks
Michael: “Let that one go, all right? Got a double on, baby! What do you want me to do with this one?” TJ: “Let him go! Just cranking up. Keep it tight on them! Get tight on him!” F: “Watch out! What we’re here for, baby! Got a double on here. I think h…