yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What Is The Coastline Paradox?


2m read
·Nov 10, 2024

I've been driving along Australia's famous Great Ocean Road. And I'm stopped here near the Twelve Apostles, which are these big sandstone bluffs. Actually, there's only eight of them left because the others have eroded over time. And erosion is really what's given us this coastline the way it looks now.

So that brings to mind a question for me. Which is, "How long is the Australian coastline?" Well, if you were to measure it out in lengths of 500 kilometers, you would find that it's about 12 and a half thousand kilometers long. But the CIA World Factbook puts the figure at more than double that: over 25,700 kilometers.

But how can it be that we have two different estimates for the length of the same coastline? Well, this is called "The Coastline Paradox." The answer is, it depends on the length of measuring stick that you use. So, if you connect up the dots from cliff to cliff to cliff, you get a shorter length of coastline than if you measure with a smaller measuring stick and measure into every inlet.

So what length of measuring stick should we use? Well, in theory, you can go all the way down to the size of a water molecule. And if you do that, then the length of Australia's coast is virtually infinite. Do you believe me that you could have a finite area object like Australia bounded by an infinite perimeter? It doesn't seem to make sense.

But I can give you another example of this: it's called the Koch snowflake. So what you do is you take a triangle with sides of length 1 and then on each side add another triangle with sides of length a third. Continue doing that again and again forever. What you end up with is a shape which is a finite area but an infinite perimeter.

Shapes like these are called fractals, and many coastlines have the same fractal structure, which means they have some sort of self-similarity on many different scales. So you can zoom in and zoom in, and the coastline looks roughly the same.

So if you want to know the length of a coastline, you need to first specify the length of your measuring stick because that's what the answer depends on.

More Articles

View All
Our Drive to Boldly Go | Origins: The Journey of Humankind
Our thirst for exploration has transformed our species from nomads into astronauts, spurring new innovations, opening up the globe, and clearing the path to new and distant worlds. We explore, not just to reach new lands but for the journey itself. It is …
Lecture 15 - How to Manage (Ben Horowitz)
So when Sam originally sent me an email to do this course, he said, “Ben, can you teach a 15-minute course on management?” And I immediately thought to myself, wow, I just wrote a 300-page book on management, so that book was entirely too long. And I, I d…
12 CRAZIEST Screensavers!
Hey, Vsauce. Michael here, with a video inspired by Orange Pumpkin Seven, who asked me to cover cool screen savers. Now at first, I was like, screen savers? Modern monitors don’t even need them. But then I sleuthed around and realized what a great idea i…
Scaling functions horizontally: examples | Transformations of functions | Algebra 2 | Khan Academy
We are told this is the graph of function f. Fair enough. Function g is defined as g of x is equal to f of 2x. What is the graph of g? So, pause this video and try to figure that out on your own. All right, now let’s work through this. The way I will thi…
Bobby Bones Descends a Slippery Cliff | Running Wild With Bear Grylls
[Wind rumbling] OK, so Bobby, where we’re heading is a 100 foot drop off that lip. We’re right on the edge of this, like, boulder, slab of rock that just curls away. And it’s one of these awkward ones because you can’t see over the lip. We’re going to go …
Water potential example | Cell structure and function | AP Biology | Khan Academy
We’re told that six identical potato core cubes were isolated from a potato. The initial weight of each cube was recorded. Each cube was then placed in one of six open beakers, each containing a different sucrose solution. The cubes remained in the beaker…