yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What Is The Coastline Paradox?


2m read
·Nov 10, 2024

I've been driving along Australia's famous Great Ocean Road. And I'm stopped here near the Twelve Apostles, which are these big sandstone bluffs. Actually, there's only eight of them left because the others have eroded over time. And erosion is really what's given us this coastline the way it looks now.

So that brings to mind a question for me. Which is, "How long is the Australian coastline?" Well, if you were to measure it out in lengths of 500 kilometers, you would find that it's about 12 and a half thousand kilometers long. But the CIA World Factbook puts the figure at more than double that: over 25,700 kilometers.

But how can it be that we have two different estimates for the length of the same coastline? Well, this is called "The Coastline Paradox." The answer is, it depends on the length of measuring stick that you use. So, if you connect up the dots from cliff to cliff to cliff, you get a shorter length of coastline than if you measure with a smaller measuring stick and measure into every inlet.

So what length of measuring stick should we use? Well, in theory, you can go all the way down to the size of a water molecule. And if you do that, then the length of Australia's coast is virtually infinite. Do you believe me that you could have a finite area object like Australia bounded by an infinite perimeter? It doesn't seem to make sense.

But I can give you another example of this: it's called the Koch snowflake. So what you do is you take a triangle with sides of length 1 and then on each side add another triangle with sides of length a third. Continue doing that again and again forever. What you end up with is a shape which is a finite area but an infinite perimeter.

Shapes like these are called fractals, and many coastlines have the same fractal structure, which means they have some sort of self-similarity on many different scales. So you can zoom in and zoom in, and the coastline looks roughly the same.

So if you want to know the length of a coastline, you need to first specify the length of your measuring stick because that's what the answer depends on.

More Articles

View All
Brave New Words - Ethan Mollick & Sal Khan
Hi everyone, it’s here from Khan Academy, and as some of you all know, I have released my second book, “Brave New Words,” about the future of AI in education and work. It’s available wherever you might buy your books. But as part of the research for that …
Parametric curve arc length | Applications of definite integrals | AP Calculus BC | Khan Academy
Let’s say we’re going to trace out a curve where our x-coordinate and our y-coordinate that they’re each defined by, or they’re functions of a third parameter T. So we could say that X is a function of T and we could also say that Y is a function of T. If…
Earthrise: The Story of the Photo that Changed the World | Short Film Showcase
From CBS New York in color, Face the Nation: a spontaneous and unrehearsed news interview with the Apollo 8 astronauts Colonel Frank Borman, the command pilot of the mission, Captain James Lovell, who has logged more hours in space than any other man, and…
Brave New Words - Bill Gates & Sal Khan
Hi everyone, it’s here from Khan Academy, and as some of you all know, I have released my second book, Brave New Words, about the future of AI, education, and work. It’s available wherever you might buy your books. But as part of the research for that boo…
Ray Dalio & Deepak Chopra on Life and Death
[Music] I’m Deepak Chopra, and I trained as an internist, medical doctor, endocrinologist, and neuroendocrinologist. My current journey is exploring consciousness and what we call reality. If you don’t know who Ray Dalio is, then you’re probably asleep. …
Linear equations with unknown coefficients | Mathematics I | High School Math | Khan Academy
So we have an equation. It says ( ax + 3x = bx + 5 ). And what I want to do together is to solve for ( x ). If we solve for ( x ), it’s going to be in terms of ( a ), ( b ), and other numbers. So pause the video and see if you can do that. All right, no…