yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What Is The Coastline Paradox?


2m read
·Nov 10, 2024

I've been driving along Australia's famous Great Ocean Road. And I'm stopped here near the Twelve Apostles, which are these big sandstone bluffs. Actually, there's only eight of them left because the others have eroded over time. And erosion is really what's given us this coastline the way it looks now.

So that brings to mind a question for me. Which is, "How long is the Australian coastline?" Well, if you were to measure it out in lengths of 500 kilometers, you would find that it's about 12 and a half thousand kilometers long. But the CIA World Factbook puts the figure at more than double that: over 25,700 kilometers.

But how can it be that we have two different estimates for the length of the same coastline? Well, this is called "The Coastline Paradox." The answer is, it depends on the length of measuring stick that you use. So, if you connect up the dots from cliff to cliff to cliff, you get a shorter length of coastline than if you measure with a smaller measuring stick and measure into every inlet.

So what length of measuring stick should we use? Well, in theory, you can go all the way down to the size of a water molecule. And if you do that, then the length of Australia's coast is virtually infinite. Do you believe me that you could have a finite area object like Australia bounded by an infinite perimeter? It doesn't seem to make sense.

But I can give you another example of this: it's called the Koch snowflake. So what you do is you take a triangle with sides of length 1 and then on each side add another triangle with sides of length a third. Continue doing that again and again forever. What you end up with is a shape which is a finite area but an infinite perimeter.

Shapes like these are called fractals, and many coastlines have the same fractal structure, which means they have some sort of self-similarity on many different scales. So you can zoom in and zoom in, and the coastline looks roughly the same.

So if you want to know the length of a coastline, you need to first specify the length of your measuring stick because that's what the answer depends on.

More Articles

View All
Can you be happy while you're BROKE?! | Ask Mr. Wonderful #12 Kevin O'Leary
[Music] They, Mr. Wonderful here, and welcome to the beachside edition of Ask Mr. Boffin. Now look, you know there’s so many fantastic questions that come through the transom in the last couple of weeks. But I was gonna wait until I’m in the studio and …
Rounding to the nearest 10
In this video, we’re going to be doing some rounding, which you’re probably not familiar with just yet. But you’ll see that it’s pretty straightforward, and we’re going to start by rounding to the nearest 10. So the first question is, what is rounding an…
ENDURANCE | Official Trailer | National Geographic Documentary Films
We ready? Yes. Okay, let’s find the Endurance. We’re still talking about Shackleton because this is the greatest tale of survival in history, and it’s a story about failure. Success awaits; dive ones, let’s go. In 1914, Shackleton was convinced the great…
TAOISM | The Power of Letting Go
Mastery of the world is achieved by letting things take their natural course. You can not master the world by changing the natural way. Lao Tzu Our civilization is in a state of ongoing strivings, in which control seems to be the highest virtue. We don’…
Ask me anything with Sal Khan: March 23 | Homeroom with Sal
And I have an exciting addition to these live streams to this daily homeroom, which is their team member from our group that partners with schools and districts and tries to get communications out to parents. And that is Dan. Dan, are you there? There’s D…
A.I. ‐ Humanity's Final Invention?
Humans rule Earth without competition, but we’re about to create something that may change that: our last invention, the most powerful tool, weapon, or maybe even entity: artificial superintelligence. This sounds like science fiction, so let’s start at th…