yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fields | Forces at a distance | Middle school physics | Khan Academy


3m read
·Nov 10, 2024

  • If you hold a ball up in the air and let it go, you know it's going to fall, but why? Nothing is touching it once you let it go. How can there be a force on it? Well, this is because Earth's gravitational force is pulling the ball, and gravity is a non-contact force. Non-contact forces don't have to touch an object to exert a force on it. Instead, these forces act over a region.

So if an object is in that region, it will be affected by the force. In this case, the ball is in Earth's gravitational field, and so it feels an attractive force towards the Earth, and the ball falls to the ground. Field forces include non-contact forces, such as electric, magnetic, and of course, gravitational forces. So since these forces are non-contact, they can exert a force on objects they aren't touching, but how do these objects know if there's a force between them?

To explain these non-contact forces, scientists eventually developed the idea that these objects were surrounded by something called a field. So what is a field? A field extends through space from an object with certain physical properties. What are those? Well, for gravitational forces, these affect objects with mass. So any object with mass has a gravitational field surrounding it that points towards the object's center.

The further you move away from the object, the less dense the field, and weaker the field becomes. Electric forces affect charged objects. So an electric field surrounds any object with a net charge, and the direction of this field will depend on the charge. Magnetic fields will affect magnets and any other material with magnetic properties.

Each spot on a field has two things associated with it: magnitude and direction. And these help us predict what forces objects will experience when they're in the field. So let's look at an example to help understand this. Say we have a planet. Now, the planet has a lot of mass, so we know it's going to be surrounded by a gravitational field that points towards the center of the planet.

I can draw these little field lines that show the direction of the field and its strength. As we move away from the planet, the field will start to weaken, and I'm going to represent that by a less dense field with these arrows. Now, let's say there's an asteroid moving near the planet in this direction. I know that the asteroid, as it's shown here, is in the outskirts of this planet's gravitational field.

So it is going to feel some gravitational attraction towards the planet, which we can draw with this vector, Fg, which is the force of gravity. Now, because it's attracted to the planet, the asteroid will continue to move towards the planet. And the closer the asteroid gets to the planet, the stronger the field and the stronger the force of attraction it will feel.

And so in this way, scientists can use fields to help predict the behavior of objects experiencing non-contact forces. And all of this may sound kind of odd, but you probably already think about forces this way. For example, if we go back to the ball that you know is going to fall, you knew this because the force of gravity from Earth was going to pull the ball towards the Earth.

But now you also know that that's because Earth's gravity is a field force. And so the ball is in the field of gravity for Earth and experiences an attractive gravitational force. So while fields may sound mysterious, they really just mean that a force is felt over a distance. Gravitational, electric, and magnetic forces are all field forces, which means they act over distance and can affect a lot of objects.

More Articles

View All
Partitioning rectangles
So, I have a rectangle drawn right over here, and my goal is to split this rectangle up into smaller equal squares. The way that I’m going to do that is by first dividing this rectangle into two rows—two equal rows—and then I’m going to divide this rectan…
Leafcutter Ants Slice Leaves for the Colony | A Real Bug's Life | National Geographic
Finally, our little leafcutter has reached the canopy. So, this is where the harvest happens? Everyone’s working hard before the weather turns. Slicing through leaves and bouncing their booties as they go. It creates rhythmic vibrations that other ants fe…
Do Shark Stories Help Sharks? | Podcast | Overheard at National Geographic
Oh my god, it smells so good. That was the thing when you were driving down to the store as a kid and you had the windows down; it’s all salt water. I’m standing on a beach at the Jersey Shore, looking out at the Atlantic Ocean. So, on a typical summer da…
A Rugged Film Location - Behind the Scenes | Life Below Zero
We are here to document the lives of people living in Alaska. The harsh reality is the environment we’re up against; it makes it tough to do our job. Their working on Life Below Zero can be very dangerous—guns here, cameras here. You never know what to ex…
How I Helped My 6th Graders Ace Math... By Taking Them Back to Kindergarten! | Mastery Learning
Hey everyone, this is Jeremy Shifling at Khan Academy. I just want to thank you for taking time out of your super busy weeks to spend time on today’s session, and I want to give a super special thanks to Tim Vandenberg, who’s been gracious enough to share…
Message to LearnStormers from Paralympic ski racer Josh Sundquist
Learn, Stromer’s! My name is Josh Sundquist. I am a YouTuber, best-selling author, and a Paralympic ski racer. I first started ski racing when I was a teenager. I went to my first race thinking I was like the best skier of all time, and it was gonna be am…