yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Current due to closing a switch: worked example | DC Circuits | AP Physics 1 | Khan Academy


2m read
·Nov 11, 2024

We are asked how does the current through R1 behave when the switch is open compared to the current through R1 when the switch is closed. Pause this video and see if you can figure that out.

All right, so let's just think about the two scenarios. We could view the current as this right over here, this current that we care about. We could either measure it there, or you could measure it right over there.

Let's first think about the scenario where the switch is open. Our current, when our switch is open, is going to be equal to the voltage across the resistors, and that's going to be our 12 volts. Twelve volts divided by the equivalent resistance of these resistors when the switch is open. Essentially, we just have R1 and R2 in series, and so this is just going to be R1 plus R2. If you have two resistors in series, their equivalent resistance is just the sum of their resistances. Fair enough?

Now, let's think about the situation where the switch is closed. So here, our current at this point of our circuit, or the current going through R1, so I sub closed, is once again going to be equal to 12 volts—the voltage across the resistors. But what are we going to divide by now?

When we close the switch, what happens? Well, these lines where we see no resistors in circuit diagrams—that's assumed to be resistanceless. So, all of the current will actually flow that way. By closing this switch, you're essentially removing R2 from the circuit. The current will just go through R1 and then follow the path of least resistance—literally.

In this situation, our current is going to be 12 volts divided by essentially just one resistance, divided by R1. So when you closed the circuit, you've essentially taken a resistor out, and so if you took a resistor out, you're going to increase the current. You could just write it as the current when the switch is open is going to be less than the current when the switch is closed.

Once again, why is that? Well, just look at the denominators here. When the switch is open, you're dividing by a larger number than when the switch is closed. Or another way of thinking about it, when the switch is open, the R2 resistance is factored in. When the switch is closed, the R2 resistance essentially becomes a non-factor, and you have less resistance, which would mean you would have higher current.

More Articles

View All
Staying at a hotel-Dinner at Nobu restaurant vlog with my mom🇯🇵
Hi, guys, it’s me, Ruri. Today, my mother and I came to a hotel to celebrate my first 1 million viewed video. I decided to book a hotel and a fancy Japanese dinner to thank my mom for supporting me. Okay, so here we have our bathroom, toilet, and shower,…
15 Ways Rich People Prepare for WW3
We’ve had World War One. World War Two. The question of a World War Three is not an if, but a when. And in the last couple of years, there’s this feeling floating around in the air of political, economic, and social unrest. Somebody screws up a nuke, goes…
Mirrors And The Fourth Dimension
Mirrors do not show us a fourth dimension, but they do show us what a fourth dimension could do to us. First, notice that some things are the same as their mirror image, but some things are not. These two shapes are similar, but they cannot be rotated to …
Thoughts on the nation's report card
Hi folks, Sal here from Khan Academy. Many of you all have caught wind that the National Assessment of Educational Progress just came out, also known as the NAEP or the Nation’s Report Card, and the results were not good. They were already bad pre-pandemi…
Reading (and comparing) multiple books | Reading | Khan Academy
Hello readers! You know what’s better than reading a book? Reading two books! Reading a bunch of books! Reading a mountain of books! This may sound self-evident, but great readers read a lot of books. Good readers read widely. They read lots of different …
WHICH PLAYER SHOULD I CHANGE? | Maresca hits back at calls for more Chelsea substitutes
Must proved a very frustrating end to the afternoon for you, and what does it tell you about your Chelsea team? No, yeah, as I said, I just said that probably we did enough to win the game today. Between the first half and second half, I think we created…