yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving quadratics by factoring: leading coefficient â   1 | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we have (6x^2 - 120x + 600 = 0). Like always, pause this video and see if you can solve for (x). If you can find the (X) values that satisfy this equation.

All right, let's work through this together. So the numbers here don't seem like outlandish numbers; they seem like something that I might be able to deal with and I might be able to factor. So let's try to do that.

The first thing I like to do is see if I can get a coefficient of one on the second degree term on the (X^2) term. It looks like actually all of these terms are divisible by six. So if we divide both sides of this equation by six, I'm still going to have nice integer coefficients. So let's do that; let's divide both sides by six.

If we divide the left side by six, divide by six, divide by six, divide by six, and I divide the right side by six. If I do that, clearly, if I do the same thing to both sides of the equation, then the equality still holds. On the left-hand side, I am going to be left with (x^2), and then (-120 / 6) that is, let's see, (120) divided by (6) is (20), so that's (-20x).

Then (600) divided by (6) is (100), so plus (100) is equal to (0). Divided by (6) is equal to (0). So let's see if we can factor. If we can express this quadratic as the product of two expressions.

The way we think about this—and we've done it multiple times—is if we have something that is (x + a) times (x + b). This is hopefully a review for you; if you multiply that out, that is going to be equal to (x^2 + (a + b)x + ab).

So what we want to do is see if we can factor this into ( (x + a)(x + b) ). (A + B) needs to be equal to (-20) (that needs to be (a + b)), and then (a \times b) needs to be equal to the constant term (that needs to be (ab)).

So can we think of two numbers that, if we take their product, we get positive (100), and if we take their sum, we get (-20)? Well, since their product is positive, we know that they have the same sign. So they're both going to have the same sign; they're either both going to be positive, or they're both going to be negative.

Since we know that we have a positive product and since their sum is negative, well, they must both be negative. You can't add up two positive numbers and get a negative, so they both must be negative.

So let's think about it a little bit. What negative numbers, when I add them together, I get (-20), and when I multiply, I get (100)? Well, you could try to factor (100); you could say, well, (-2 \times -50) or (-4 \times -25), but the one that might jump out at you is (-10) times (-10).

And this is (-10 + -10), so in that case, both our (a) and our (b) would be (-10). We can rewrite the left side of this equation as ( (x - 10)(x - 10) ). Again, (x - 10) and that is going to be equal to zero.

All I've done is I've factored this quadratic, or another way, these are both the same thing as ( (x - 10)^2 = 0 ). So the only way that the left-hand side is going to be equal to zero is if (x - 10) is equal to zero.

You could think of this as taking the square root of both sides, and it doesn't matter if I take the positive or negative square root or both of them; it's the square root of (0).

So we would say that (x - 10) needs to be equal to zero, and so adding (10) to both sides, we have (x = 10) is the solution to this quadratic equation up here.

More Articles

View All
The ideal gas law (PV = nRT) | Intermolecular forces and properties | AP Chemistry | Khan Academy
In this video, we’re going to talk about ideal gases and how we can describe what’s going on with them. So the first question you might be wondering is, what is an ideal gas? It really is a bit of a theoretical construct that helps us describe a lot of wh…
15 Signs You Control Your Money
Yesterday we talked about people who are controlled by money. Go watch it if you haven’t already. Then come back. Today we’re talking about those who have complete control over their money: how they use it, how they think about it, and how they plan for …
You Can Do More Than You Think | The Growth Mindset
Probably most people know the story about the turtle and the rabbit, in which the rabbit laughed at the turtle because of his slowness. But to his surprise, the turtle challenged the rabbit to a race. Initially, the rabbit thought the turtle was joking, b…
The Weirdness of Boxes | Brain Games
We’ve placed weights inside of each of these boxes. We asked our volunteers, without peeking, to tell us which is heavier. “That wouldn’t seem to have,” here definitely, yeah, definitely. “Uh, this is lighter. Yeah, this one feels a little bit heavier, …
Y Combinator Partners Q&A
I’m Cat Manik. I’m a partner at Y Combinator, and honestly, one of my favorite parts, one of the best parts of working at Y Combinator, is getting to work with the other partners. So, I’m really pleased right now to invite them all on stage. We’re going t…
The Cosmic Calendar | Cosmos: Possible Worlds
This cosmic calendar compresses all of the last 13.8 billion years since the Big Bang into a single calendar. Either every month is a little more than a billion years, every day a little less than 40 million. A single hour is almost 2 million years. That …