yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions defined by integrals: switched interval | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The graph of f is shown below. Let G of X be equal to the definite integral from 0 to X of f of T DT.

Now, at first when you see this, you're like, "Wow, this is strange! I have a function that is being defined by an integral, a definite integral, but one of its bounds is X." You should just say, "Well, this is okay. A function can be defined any which way," and as we'll see, it's actually quite straightforward to evaluate this.

So, G of -2. G of -2, and I'll do the -2 in a different color. G of -2, well, what we do is we take this expression right over here, this definite integral, and everywhere we see an X, we replace it with a -2. So, this is going to be equal to the integral from 0 to X of, and I'll write X in a second, F of T DT. Well, X is now -2, this is now -2.

Now, how do we figure out what this is? Now, before we even look at this graph, you might say, "Okay, this is the region under the area, the region under the graph of F of T between -2 and 0." But you have to be careful. Notice our upper bound here is actually a lower number than our lower bound right over here.

So, it will be nice to swap those bounds so we can truly view it as the area of the region under F of T above the T-axis between those two bounds. When you swap the bounds, this is going to be equal to negative definite integral from -2 to zero of F of T DT.

And now what we have right over here, what I'm squaring off in magenta, this is the area under the curve F between -2 and 0. So, between -2 and zero, that is this area right over here that we care about.

Now, what is that going to be? Well, you could—there's a bunch of different ways that you could do this. You could split it off into a square and a triangle. The area of this square right over here is four; it's 2 by 2.

Just make sure to look at the unit; sometimes each square doesn't represent one square unit, but in this case it does, so that's four. Then up here, this is half of four, right? If it was all of this, that would be four. This triangle is half of four, so this is two right over there.

Or you could view this as base times height times 1/2, which is going to be 2 times 2 times 1/2. So, this area right over here is six. So, this part is six, but we can't forget that negative sign, so this is going to be equal to negative six. Thus, G of -2 is -6.

More Articles

View All
Caffeine 101 | National Geographic
(light liquid pouring) (gentle sipping) [Narrator] For morning coffee to afternoon tea, caffeine is so thoroughly entrenched in our daily routines and has become the world’s most widely used psychoactive substance. Caffeine is a chemical compound that st…
Why Your Dark Side Is Your Friend (Jungian Philosophy) | STOICISM
In every one of us, there lurks such a dark beast, a sinister shadow waiting to be acknowledged. This shadow, often ignored, is packed with uncharted feelings and suppressed thoughts that can surprisingly enlighten and empower us. Stoicism teaches us the …
How to Stop Wasting Time on the Internet - 4 Awesome Tips
[Music] If you’re watching this video, there’s a pretty good chance that you shouldn’t be watching it and should be doing something more productive instead. But if you’ve already done your work, good for you! Either way, here are four useful strategies yo…
Why it's so hard to be happy
A long time ago, humanity rose to become the dominant species on planet Earth. And we were able to do this because of one specific trait. It certainly wasn’t our physical prowess, pretty much any animal the same size as us would absolutely destroy us in a…
Lord of the Rings Mythology Explained
The Lord of the Rings has lots of different kinds of people: Elven people, dwarvin people, tree people, half-sized people, even people people. There’s, like, a million pages of background explaining this world that goes much deeper than the books or the m…
Exoplanets 101 | National Geographic
(Dramatic music) [Narrator] They are nestled in the final frontier, countless worlds scattered throughout countless galaxies, challenging the notion that we are alone in the universe. Exoplanets are worlds that exist outside of our solar system. Also kno…