yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions defined by integrals: switched interval | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The graph of f is shown below. Let G of X be equal to the definite integral from 0 to X of f of T DT.

Now, at first when you see this, you're like, "Wow, this is strange! I have a function that is being defined by an integral, a definite integral, but one of its bounds is X." You should just say, "Well, this is okay. A function can be defined any which way," and as we'll see, it's actually quite straightforward to evaluate this.

So, G of -2. G of -2, and I'll do the -2 in a different color. G of -2, well, what we do is we take this expression right over here, this definite integral, and everywhere we see an X, we replace it with a -2. So, this is going to be equal to the integral from 0 to X of, and I'll write X in a second, F of T DT. Well, X is now -2, this is now -2.

Now, how do we figure out what this is? Now, before we even look at this graph, you might say, "Okay, this is the region under the area, the region under the graph of F of T between -2 and 0." But you have to be careful. Notice our upper bound here is actually a lower number than our lower bound right over here.

So, it will be nice to swap those bounds so we can truly view it as the area of the region under F of T above the T-axis between those two bounds. When you swap the bounds, this is going to be equal to negative definite integral from -2 to zero of F of T DT.

And now what we have right over here, what I'm squaring off in magenta, this is the area under the curve F between -2 and 0. So, between -2 and zero, that is this area right over here that we care about.

Now, what is that going to be? Well, you could—there's a bunch of different ways that you could do this. You could split it off into a square and a triangle. The area of this square right over here is four; it's 2 by 2.

Just make sure to look at the unit; sometimes each square doesn't represent one square unit, but in this case it does, so that's four. Then up here, this is half of four, right? If it was all of this, that would be four. This triangle is half of four, so this is two right over there.

Or you could view this as base times height times 1/2, which is going to be 2 times 2 times 1/2. So, this area right over here is six. So, this part is six, but we can't forget that negative sign, so this is going to be equal to negative six. Thus, G of -2 is -6.

More Articles

View All
Good Explanations Are Hard to Vary
Brett, would you say that a scientific theory is a subset of a good explanation? Yes, they’re the testable kinds of good explanations. Falsifiable theories are actually a dime a dozen. This doesn’t tell you anything about the quality of the explanation yo…
Photographing the People, Plants, and Animals of the Amazon | National Geographic
What you’ve got is you’ve got the world’s most biodiverse national park. In it, you have a population of indigenous people, which makes it quite unusual because often when you have a national park, all the people are forced out of it to live along the edg…
Steve Varsano talks about his experience in aviation
When you’re selling a jet for a company, that company is either moving up to a bigger, newer jet, or the company’s having problems and they’re selling the jet and they’re getting out of the business of operating their own corporate jet. If it’s the latte…
Ways to rewrite a percentage
[Instructor] We’re asked which of the following options have the same value as 2% of 90? Pause this video, and see if you can figure it out. And as a reminder, they say, pick two answers. All right, now let’s work through this together. So, before I eve…
The presidential incumbency advantage | US government and civics | Khan Academy
What we’re going to do in this video is talk about the incumbent advantage. This is the idea that the person who is already in power, the incumbent, has an advantage in elections. In particular, we’re going to focus on presidential elections, although thi…
How secure is 256 bit security?
In the main video on cryptocurrencies, I made two references to situations where in order to break a given piece of security, you would have to guess a specific string of 256 bits. One of these was in the context of digital signatures, and the other in th…