yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions defined by integrals: switched interval | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The graph of f is shown below. Let G of X be equal to the definite integral from 0 to X of f of T DT.

Now, at first when you see this, you're like, "Wow, this is strange! I have a function that is being defined by an integral, a definite integral, but one of its bounds is X." You should just say, "Well, this is okay. A function can be defined any which way," and as we'll see, it's actually quite straightforward to evaluate this.

So, G of -2. G of -2, and I'll do the -2 in a different color. G of -2, well, what we do is we take this expression right over here, this definite integral, and everywhere we see an X, we replace it with a -2. So, this is going to be equal to the integral from 0 to X of, and I'll write X in a second, F of T DT. Well, X is now -2, this is now -2.

Now, how do we figure out what this is? Now, before we even look at this graph, you might say, "Okay, this is the region under the area, the region under the graph of F of T between -2 and 0." But you have to be careful. Notice our upper bound here is actually a lower number than our lower bound right over here.

So, it will be nice to swap those bounds so we can truly view it as the area of the region under F of T above the T-axis between those two bounds. When you swap the bounds, this is going to be equal to negative definite integral from -2 to zero of F of T DT.

And now what we have right over here, what I'm squaring off in magenta, this is the area under the curve F between -2 and 0. So, between -2 and zero, that is this area right over here that we care about.

Now, what is that going to be? Well, you could—there's a bunch of different ways that you could do this. You could split it off into a square and a triangle. The area of this square right over here is four; it's 2 by 2.

Just make sure to look at the unit; sometimes each square doesn't represent one square unit, but in this case it does, so that's four. Then up here, this is half of four, right? If it was all of this, that would be four. This triangle is half of four, so this is two right over there.

Or you could view this as base times height times 1/2, which is going to be 2 times 2 times 1/2. So, this area right over here is six. So, this part is six, but we can't forget that negative sign, so this is going to be equal to negative six. Thus, G of -2 is -6.

More Articles

View All
PPCs for increasing, decreasing and constant opportunity cost | AP Macroeconomics | Khan Academy
So we have three different possible production possibilities curves for rabbits and berries here, which we’ve already talked about in other videos. But the reason why I’m showing you three different curves is because these three different curves clearly h…
Is Space Weather a Thing? | StarTalk
Another kind of weather more traditional way to think about whether is what the air is doing on planets that have atmospheres. And moons don’t have an atmosphere, so we don’t think about them. Whether Mars has an atmosphere, Jupiter has an atmosphere, Sa…
Inaction Is A Slow Death
Thank you. Um. [Music] It’s hard to take action. It’s painful. Washing the dishes isn’t fun. Meditation can be tedious. Waking up early is hard. The discomfort we feel in the face of action often paralyzes us from doing anything at all. So we sleep in…
America Inside Out with Katie Couric - First Look | National Geographic
KATIE COURIC (VOICEOVER): Is shifting before our eyes. Race you to the top, Mike. (VOICEOVER) Big changes– Hi, Henry. HENRY: Hi, Katie. KATIE COURIC (VOICEOVER): –big challenges– I hate to admit it, but I probably am prejudiced. KATIE COURIC (VOICEOV…
60 Startup Founders Share How They Met Their Co-Founder
How did you meet your co-founder? Yeah, it’s a funny story. So, uh, do you want to take this one? [Music] So we went to school, college, College, college. They’re both French, but actually, we met at Stanford in California. Week two of MIT, we went to …
Difference of squares intro | Mathematics II | High School Math | Khan Academy
We’re now going to explore factoring a type of expression called a difference of squares. The reason why it’s called a difference of squares is because it’s expressions like x² - 9. This is a difference; we’re subtracting between two quantities that are e…