yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions defined by integrals: switched interval | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The graph of f is shown below. Let G of X be equal to the definite integral from 0 to X of f of T DT.

Now, at first when you see this, you're like, "Wow, this is strange! I have a function that is being defined by an integral, a definite integral, but one of its bounds is X." You should just say, "Well, this is okay. A function can be defined any which way," and as we'll see, it's actually quite straightforward to evaluate this.

So, G of -2. G of -2, and I'll do the -2 in a different color. G of -2, well, what we do is we take this expression right over here, this definite integral, and everywhere we see an X, we replace it with a -2. So, this is going to be equal to the integral from 0 to X of, and I'll write X in a second, F of T DT. Well, X is now -2, this is now -2.

Now, how do we figure out what this is? Now, before we even look at this graph, you might say, "Okay, this is the region under the area, the region under the graph of F of T between -2 and 0." But you have to be careful. Notice our upper bound here is actually a lower number than our lower bound right over here.

So, it will be nice to swap those bounds so we can truly view it as the area of the region under F of T above the T-axis between those two bounds. When you swap the bounds, this is going to be equal to negative definite integral from -2 to zero of F of T DT.

And now what we have right over here, what I'm squaring off in magenta, this is the area under the curve F between -2 and 0. So, between -2 and zero, that is this area right over here that we care about.

Now, what is that going to be? Well, you could—there's a bunch of different ways that you could do this. You could split it off into a square and a triangle. The area of this square right over here is four; it's 2 by 2.

Just make sure to look at the unit; sometimes each square doesn't represent one square unit, but in this case it does, so that's four. Then up here, this is half of four, right? If it was all of this, that would be four. This triangle is half of four, so this is two right over there.

Or you could view this as base times height times 1/2, which is going to be 2 times 2 times 1/2. So, this area right over here is six. So, this part is six, but we can't forget that negative sign, so this is going to be equal to negative six. Thus, G of -2 is -6.

More Articles

View All
Mapping the Mysterious Islands Near San Francisco | Best Job Ever
Ross and I went out to the ferons to capture conservation stories and map The Refuge. The Falon National Wildlife Refuge is the largest seabird nesting colony in the lower 48 states, and it’s also an incredibly important breeding ground for marine mammals…
8 Daily Habits That Changed My Life
What’s up, you guys? It’s Graham here. So, the new year is fast approaching. It’s almost going to be 2020, and for some reason, I still think that five years ago was 2010. But anyway, as we get closer to the new year, people begin creating their New Year…
Eulers formula
So in this video, we’re going to talk about Oilers formula. One of the things I want to start out with is why. Why do we want to talk about this rather oddly looking formula? What’s the big deal about this? And there is a big deal, and the big deal is e. …
A Russian City's Surprising German Roots | National Geographic
In Kaliningrad, the architecture looks German. The neighborhood has some German names, and its most famous resident was Germany’s most renowned philosopher, Immanuel Kant. But this is not in Germany; this is Russia. The city began its life as Königsberg, …
Hiring Engineers with Ammon Bartram
Hey guys, today we have Almond Bartram, co-founder of Socialcam and Triplebyte, and he is here to talk to us about hiring. So, could you just give us a quick intro about what you’ve worked on? Cool, so I joined Justin.tv fresh out of school in 2009. It w…
How to start learning a language-Language tips from a Polyglot
Hi guys, it’s me, Judy. I’m a first-year medical student in Turkey, and today we’re gonna be talking about how to start learning a new language. A lot of people want to learn a new language, but most of us don’t know where to start or what to do. So, I ho…