yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Functions defined by integrals: switched interval | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The graph of f is shown below. Let G of X be equal to the definite integral from 0 to X of f of T DT.

Now, at first when you see this, you're like, "Wow, this is strange! I have a function that is being defined by an integral, a definite integral, but one of its bounds is X." You should just say, "Well, this is okay. A function can be defined any which way," and as we'll see, it's actually quite straightforward to evaluate this.

So, G of -2. G of -2, and I'll do the -2 in a different color. G of -2, well, what we do is we take this expression right over here, this definite integral, and everywhere we see an X, we replace it with a -2. So, this is going to be equal to the integral from 0 to X of, and I'll write X in a second, F of T DT. Well, X is now -2, this is now -2.

Now, how do we figure out what this is? Now, before we even look at this graph, you might say, "Okay, this is the region under the area, the region under the graph of F of T between -2 and 0." But you have to be careful. Notice our upper bound here is actually a lower number than our lower bound right over here.

So, it will be nice to swap those bounds so we can truly view it as the area of the region under F of T above the T-axis between those two bounds. When you swap the bounds, this is going to be equal to negative definite integral from -2 to zero of F of T DT.

And now what we have right over here, what I'm squaring off in magenta, this is the area under the curve F between -2 and 0. So, between -2 and zero, that is this area right over here that we care about.

Now, what is that going to be? Well, you could—there's a bunch of different ways that you could do this. You could split it off into a square and a triangle. The area of this square right over here is four; it's 2 by 2.

Just make sure to look at the unit; sometimes each square doesn't represent one square unit, but in this case it does, so that's four. Then up here, this is half of four, right? If it was all of this, that would be four. This triangle is half of four, so this is two right over there.

Or you could view this as base times height times 1/2, which is going to be 2 times 2 times 1/2. So, this area right over here is six. So, this part is six, but we can't forget that negative sign, so this is going to be equal to negative six. Thus, G of -2 is -6.

More Articles

View All
Every Mathematical Theory Is Held Inside a Physical Substrate
There goes my solution for Zeno’s paradox, which is: before you can get all the way somewhere, you have to get halfway there. And before you can get halfway there, you have to get a quarter of the way there. And therefore, you’ll never get there. One way…
Should Warren Buffett Buy Tesla Stock?
[Music] Uh no, I think electric cars are very much in America’s future. Well Warren, if you think that, would you consider potentially buying some Tesla stock? No, there has been a lot of speculation recently that Warren Buffett is in fact investing in…
2015 AP Chemistry free response 5a: Finding order of reaction | Chemistry | Khan Academy
[Voiceover] Blue food coloring can be oxidized by household bleach, which contains hypochlorite ion, or OCI-, to form colorless products, as represented by the equation above. So we have this equation where we have blue food coloring, which has this chemi…
How I learned English by myself for free without studying
Hi guys, what’s up? It’s me, Judy. I’m a first-year medical student in Turkey, and today we’re gonna be talking about how I learned English by myself without even studying it. So let’s get started! Okay, so I’ll mention about my English background, a dis…
The derivative & tangent line equations | Derivatives introduction | AP Calculus AB | Khan Academy
We’re told that the tangent line to the graph of function at the point (2, 3) passes through the point (7, 6). Find f prime of 2. So whenever you see something like this, it doesn’t hurt to try to visualize it. You might want to draw it out or just visua…
How Carburetors are Made (Basically Magic) - Holley Factory Tour | Smarter Every Day 261
Hey, it’s me, Destin. Welcome back to Smarter Every Day! In a previous episode of Smarter Every Day, I went to visit my dad and found him repairing a carburetor on his filler. After he told me how they worked, we went away and made this a transparent carb…