yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Representing endothermic and exothermic processes using energy diagrams | Khan Academy


3m read
·Nov 10, 2024

Let's say we run an experiment to determine if a reaction is endo or exothermic. For our hypothetical reaction, A reacts with B to form C, and let's say this reaction takes place in aqueous solution in a beaker. We can define our system as the reactants and products that make up our chemical reaction, and everything else is part of the surroundings. For example, the water and also the beaker the reaction is taking place in.

Let's say we run the reaction, and we put our hand on the beaker, and we feel that the beaker is warm. If the beaker is warm, since the beaker is part of the surroundings, energy must have been transferred from the system to the surroundings. So, heat flowed from the system to the surroundings, and that's an example of an exothermic reaction.

So, delta H is negative. We can determine the amount of energy that flowed from the system to the surroundings by looking at the energy profile for our hypothetical reaction. In an energy profile, potential energy is on the y-axis in kilojoules per mole, and reaction progress is on the x-axis. So, as we move to the right on the x-axis, the reaction is occurring. Our reactants, which are A and B, have a certain amount of potential energy.

So, that's right here on our energy profile. That part represents the energy of our reactants. Our reactants react together to form our product, which is C, and that's at the very end. So, over here, this line represents the potential energy of our products. Notice how the potential energy of our reactants is higher than the potential energy of the product.

So, if we were to find the change in energy, that would be the final minus the initial. So, the energy of the products minus the energy of the reactants. For this energy profile, the energy of the products is about 50 kilojoules per mole, and the potential energy of our reactants is at 100. So, this would be 50 minus 100, which is equal to negative 50 kilojoules per mole.

So, on our energy profile, we could show delta E, which would be this difference right here. So, that represents delta E, and the change in energy, delta E, is also equal to the change in the enthalpy, delta H, for this reaction. So, we know that the change in enthalpy is equal to negative 50 kilojoules per mole.

So, let's go ahead and plug that in over here on the left. By feeling the outside of the beaker, we knew that the reaction was exothermic, but the energy profile allowed us to figure out how much energy was transferred from the system to the surroundings.

So, for an energy profile, when the energy of the reactants is higher than the energy of the products, this is the energy profile for an exothermic reaction.

Let's say we ran a similar reaction where A plus B turned into C, but this time when we felt the beaker, the beaker felt cool to the touch. If that's the case, it's because energy was being transferred from the surroundings to the system.

And since the surroundings was losing energy, that's why the beaker felt cool. So, heat flowed from the surroundings to the system, and this occurs in an endothermic reaction, and the change in enthalpy, delta H, is positive for an endothermic process.

When we look at the energy profile for an endothermic reaction, the energy of the reactants—let's go ahead and write "reactants" in here—the energy of the reactants is lower than the energy of the products.

So, this time if we find delta E, that would be the energy of our products minus the energy of our reactants. The energy of our products is about 100 kilojoules per mole, and the energy of our reactants is about 50.

So, let's say it's 100 minus 50, which would be positive 50 kilojoules per mole. On our diagram, if we represent delta E, that would be this difference here on the energy profile, and once again, delta E is equal to the change in the enthalpy, delta H, for the reaction.

So, delta H for this hypothetical reaction is positive 50 kilojoules per mole. Since delta H is positive, we know that energy was transferred from the surroundings to the system, and that's the reason why the products have a higher potential energy than the reactants in our energy diagram.

More Articles

View All
The History of Magic | StarTalk
What’s this with Escape artists? I never was as enchanted by that as others have been. When you’re talking about a escape artist, you’re really talking about Houdini and then a lot of knockoffs after that. Houdini, in the early 20th century, a man born in…
Example finding distance with Pythagorean theorem
We are asked what is the distance between the following points, so pause this video and see if you can figure it out. Well, there are multiple ways to think about it. The way I think about it is really to try to draw a right triangle where these points, w…
Buddha - Be Aware, Become Free
In The Dhammapada, Buddha says, “the monk who delights in awareness, seeing the danger in unawareness, not liable to fall back, is close to [Nirvana].” So Buddha is saying that awareness leads to freedom from suffering, and unawareness leads to suffering.…
Monopsony employers and minimum wages
In this video, we’re going to review what we’ve already learned about monopsony employers that we’ve covered in a previous video. But then we’re going to add a twist of adding a minimum wage and see what happens. And it’s actually interesting; it’s actual…
15 Things Millennials Spend Money On That Are Worth It
Millennials have been getting a bad rap for their spending habits for years now, and we’re here to bust some myths about it today. Now sure, we keep hearing that the avocado toast-loving, custom coffee-drinking generation are lagging behind when it comes …
2011 Calculus AB Free Response #1 parts b c d | AP Calculus AB | Khan Academy
Alright, now let’s tackle Part B. Find the average velocity of the particle for the time period from zero is less than or equal to T is less than or equal to 6. So our average velocity, that’s just going to be our change in position, which we could view …