yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Balancing a simple redox equation | Chemical reactions | AP Chemistry | Khan Academy


5m read
·Nov 10, 2024

So what we have here is a redox reaction. Things are getting oxidized and reduced; that's the name, redox. But we want to balance this redox reaction, and when we talk about balancing a redox reaction, we want to make sure we conserve mass and charge on both sides of this reaction.

So how do we do that? Well, the first step is to assign oxidation numbers, or oxidation states, to each of the constituent elements on either side of the reaction. That will let us know who's getting oxidized and who's getting reduced, and then we can set up the half reactions, which we can then balance.

All right, so let's first look at this aluminum right over here. It has an oxidation state, or an oxidation number, of zero; it's just aluminum by itself. Then we can go to this hydrogen. This is really just a proton right over here; it has a plus one charge, and so its hypothetical charge, you could say, well, that would be plus one as well, which would be its oxidation number or its oxidation state.

Then, when we get on to the right side of this reaction, we see that the aluminum now has a positive three charge. So its oxidation number would also be positive three. We can see here that the hydrogen—actually, now we have two, so we're gonna have to deal with that later on—we only have one here, but now each of these hydrogens has an oxidation number of zero. They're not taking up electrons or giving away electrons; you just have two hydrogens bonded to each other.

All right, so now that we've assigned oxidation numbers, we can figure out who's getting oxidized and who is getting reduced. If you look at the aluminum, aluminum goes from an oxidation number of zero to plus three. So if your oxidation number is increasing, that means you're getting oxidized. You might also remember oil rig: oxidation is losing electrons. Because you're losing electrons, you're having a more positive charge, but your oxidation number is going up, so you're getting oxidized.

If you look at the hydrogen, we're going from a plus one to a zero. If your oxidation number is reducing, you are being reduced. So now let's set up both of the half reactions: the oxidized half reaction for aluminum and then the reduction for hydrogen.

So first for the aluminum, we have aluminum solid, and its half reaction is going to now form aluminum with a plus three charge in the aqueous state. So let's first balance this for just the number of aluminums we have; we have one aluminum on the left, one aluminum on the right, so that seems balanced. Now let's try to balance it for charge. So we have no charge here, so we should have a total of no charge on the right, but we have plus three here.

What we need to do is add some electrons. So let me add three electrons right over here, and there we have it; we have balanced it for charge. Now let's think about the hydrogen. If we take a proton on the left, let me just do it like this, and it's in an aqueous solution. On the right, we just have hydrogen molecules—neutral hydrogen molecules. So first, let us balance it for the number of hydrogens.

We have two on the right, one on the left, so we're going to have to put a two right over here. So we've balanced for the number of hydrogens, and now let's balance for charge. Let's see on the right-hand side we have no net charge. Well, on the left-hand side right over here, we have a positive 2 net charge.

So in order to balance this, I have to put two electrons on the left-hand side. So let me do that here—so two electrons I'm going to add over here—and now it looks like it is balanced for charge. Now the next thing we want to do is we want to balance the number of electrons that we have on the right-hand side and on the left-hand side in these half reactions.

So how can you do that? Once you have three here and you have two here, the least common multiple involving a little bit of your elementary school mathematics here of three and two is six. So we can get these both to six. How could we do that? Well, we could multiply this top half reaction by two, so let me do that.

If I multiply this top half reaction by two, and if I multiply this bottom half reaction by three—why does that work? Well, two times three electrons is going to give us six electrons and three times two electrons is going to give us six electrons. So let me now rewrite this. If I multiply by two, we're going to have two aluminums. So we have two aluminums in a solid state, and then on the right-hand side of this half reaction, I'm multiplying everything by two; so now I have two aluminums plus three in an aqueous solution, and then I'm multiplying these electrons by two as well, so plus six electrons.

Now let me do this down here. Three times two electrons—that is going to give us six electrons—and then I'm going to multiply this three times this two, so that's going to give us six hydrogen protons, I guess I could say. So plus six hydrogen protons that are in an aqueous solution, and then on the right-hand side, if I multiply by three, I have three hydrogen molecules, each of them with two hydrogen atoms.

And so now I have balanced the number of electrons on both sides. Now I'm going to add these two half reactions. If I add the two half reactions, what do I get? Let me do it down here. So on the left-hand side, I'm just going to add up all of this stuff right over here. So I'm going to get six electrons plus two aluminums plus six hydrogen protons plus six hydrogen protons.

Then on the right-hand side, I am going to add up all of this stuff. So I have those two aluminums now with a plus three charge in an aqueous solution. I'm going to have the three hydrogens—three hydrogen molecules, I should say. There's actually six hydrogens here, and then I have the six electrons plus six electrons.

I have six electrons on the left, six electrons on the right; I could cancel those out. And then what I have here is our balanced redox reaction—balanced for both mass and charge—and we are done.

More Articles

View All
Baidu's AI Lab Director on Advancing Speech Recognition and Simulation
Today we have Adam Coats here for an interview. Um, Adam, uh, you run the AI Lab at Buu in Silicon Valley. Um, could you just give us a quick intro and explain what Buu is for people who don’t know? Yeah, um, so BYU is actually the largest search engine …
Embracing Nihilism: What do we do when there's nothing?
God is dead. God remains dead, and we have killed him. How shall we comfort ourselves, the murderers of all murderers? What was holiest and mightiest of all that the world has yet owned has bled to death under our knives. Who will wipe this blood off of u…
Interpretting exponential expression
The expression ( 5 * 2^T ) gives the number of leaves in a plant as a function of the number of weeks since it was planted. What does two represent in this expression? So pause this video and see if you can figure it out on your own. All right, so let’s …
What staying up all night does to your brain - Anna Rothschild
You’re just one Roman Empire history final away from a relaxing spring break. But you still have so much to study! So you decide to follow in the footsteps of many students before you and pull an all-nighter. When you stay up all night, you’re fighting a…
Road Trip After Eight Years Without Driving
Oh my God! Oh my God! Oh my God! Oh my God! Oh my God! Oh my God! Oh my God! Oh my God! Oh my God! Oh my God! Oh my God! Yessssssss! happy laughter footsteps wind CLUNK Right now I am in San Jose on a big summer work trip. And I’ve got 10 days to get to M…
All Shower Thoughts I Had This Year
have you ever paused to think about how one of the most famous sentences of all time doesn’t make grammatical sense? Well, because we all apparently heard it wrong and continue to say it wrong. According to the man himself, Neil Armstrong, what he did say…