yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

This Is What Happens to Your Brain on Opioids | Short Film Showcase


3m read
·Nov 11, 2024

This is Susan. Susan loves to bike. While out for a ride, she falls and breaks her arm. Special cells called neurons send a signal through the spinal cord to the brain, which interprets the signal as pain.

Susan understands the pain means she needs to go to the hospital, and her body is equipped for survival, helping her not to panic so she can seek help. Many of her neurons are covered in proteins called opioid receptors. These receptors act like a brake to slow down the neurons' ability to send pain signals.

When injured, her body releases natural painkillers called endorphins. Like a key in a lock, endorphins activate opioid receptors, slowing down the pain signal and preventing a panic. Susan gets treated for the broken bone, but three months later her arm still hurts, and now that pain is making her feel depressed and anxious.

So, her doctor prescribes an opioid painkiller. There are many different opioids, but they all share a chemical similarity to our own endorphins. This allows them to bind to the same opioid receptors and stop pain signals. But that's not all they do. Deep inside Susan's brain is a region called the ventral tegmental area, or VTA for short.

The VTA is full of neurons that produce a chemical called dopamine. When something good happens, dopamine is released, giving Susan a feeling of pleasure. This helps teach her brain to keep seeking out good things to keep dopamine neurons in check. Inhibitory thoughts keep the brakes on until something good comes along.

Just like the pain neurons, the VTA neurons are covered in opioid receptors. When Susan takes the painkiller prescribed by her doctor, the opioid receptors turn off. The rush of dopamine temporarily eliminates Susan's depression and anxiety, and she feels relief, calmness, and even euphoria.

As Susan continues to take the painkillers, her brain responds by trying to regain its balance. Her inhibitory neurons work extra hard, even when the receptors are activated, and it becomes harder and harder for her dopamine neurons to release dopamine. Susan finds that she needs to increase her dose of painkillers in order to feel comfortable. This is called tolerance.

Eventually, Susan's pills run out. Inhibitory neurons let loose, clamping down on the dopamine neurons and shutting them out almost completely. Now, not only is Susan in pain, but the depression and anxiety come back. On top of that, Susan feels ravaged by an inescapable physical sickness, far worse than any flu.

Susan's body is going through withdrawal. Most people who take opioids for a long time tend to experience some withdrawal, but they can still stop taking the pills and return to normal. But for people like Susan, it's not so easy. Genetics and the environment she grew up in put her at a higher risk for addiction.

Her withdrawal symptoms aren't just unpleasant; they're unbearable. Susan thinks the only way to feel normal is to find more opioids, and this is how the cycle of opioid addiction emerges, driven by a brain trying to regain its balance.

But there is hope for Susan. Though the road to recovery can be challenging and there may be setbacks, treatments can retrain Susan's brain. With the help of medication and therapy, Susan finds pleasure in her life once again.

[Music] You. You. [Music]

More Articles

View All
Care About the Ocean? Think Twice About Your Coffee Lid. | Short Film Showcase
Humankind is not woven the web of life; we are but one thread within it. Whatever we do to the web, we do to ourselves. All things are bound together; all things connect. The diversity of life on Earth is entirely dependent on one crucial element: water. …
Worked example: coefficient in Maclaurin polynomial | Series | AP Calculus BC | Khan Academy
Nth derivative of g at x equals 0 is given by. So the nth derivative of G evaluated at x equal 0 is equal to n + 7 over n 3r for n is greater than or equal to 1. What is the coefficient for the term containing x^2 in the McLaurin series of G? So let’s ju…
His Invention Brings Life-Saving Heart Care to Rural Africa | Best Job Ever
The problem is the shortage of cardiologists in Africa. In the developing countries, the mortality rate of cardiovascular disease is very high. So, in each family, you will have at least one person who will suffer from cardiovascular disease. My name is …
Weak acid–weak base reactions | Acids and bases | AP Chemistry | Khan Academy
Let’s say that HA represents a generic weak acid and B represents a generic weak base. If our weak acid donates a proton to our weak base, that would form A⁻ and HB⁺. To identify conjugate acid-base pairs, remember there’s only one proton, or one H⁺ diffe…
Limits of combined functions | Limits and continuity | AP Calculus AB | Khan Academy
So let’s find the limit of f of x times h of x as x approaches 0. All right, we have graphical depictions of the graphs y equals f of x and y equals h of x. We know from our limit properties that this is going to be the same thing as the limit as x appro…
Area between curves | Applications of definite integrals | AP Calculus AB | Khan Academy
[Instructor] We have already covered the notion of area between a curve and the x-axis using a definite integral. We are now going to then extend this to think about the area between curves. So let’s say we care about the region from x equals a to x equal…