yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Composing matrices | Matrices | Precalculus | Khan Academy


4m read
·Nov 10, 2024

So what I have here is two different transformation matrices. What we're going to think about in this video is: can we construct a new matrix that's based on the composition of these transformations?

Or, a simpler way of saying that is a new transformation that's based on applying one of these transformations first and then the other one right after that.

So first, let's just review what's going on. If we have some random vector here, (a, b), we know that we could view this as (a) times the ((1, 0)) vector, the unit vector in the x direction, plus (b) times the ((0, 1)) vector, which is the unit vector that goes in the vertical direction.

Now, if you were to apply this transformation, capital (A), here, it tells you instead of using ((1, 0)) and ((0, 1)), use these two columns instead. So if you were to apply the transformation here, I guess we could call it (A) for (b'), that is going to be, if you apply the capital (A) transformation matrix, it's going to be (a) times not ((1, 0))—you use ((0, 5)) instead. And then plus (b) times not ((0, 1))—you use ((2, -1)) instead.

So that's just a little bit of review, but what we're going to think about in this video is: what would be the transformation matrix for the composition? And I could write that as (B(A)) right over here, and you might recognize this from function notation where essentially it's saying you would apply the function (A) first and then whatever the output of that is, you would then input that into (B) and you would get the output of that.

And that makes sense because you can view transformation matrices really as functions—functions that map points on the coordinate plane. So in this situation, what would be the transformation matrix that is a composition of these two?

Pause this video and think about that.

All right, well, what would happen is we would first transform any point using these two vectors: the ((0, 5)) and the ((2, -1)) because that's the first transformation we do. And then we would apply this transformation to whatever the resulting vector is. Now, that seems pretty involved, and we don't want to write it in terms of (a) or (b)’s; we just want to write it in terms of a transformation matrix.

So one way to think about it is we can transform each of these vectors that you have in matrix (A), because remember that says what do you turn the vectors ((1, 0)) and ((0, 1)) into. So if we transform ((0, 5)) using the matrix (B) and if we transform ((2, -1)) using the matrix (B) and we put them in their respective columns, we should have the composition of this.

So let me write it this way and create a little bit of space.

So let's say that the composition (B(A)) is equal to, all right, a big two by two matrix right over here. The first thing we can do is apply transformation matrix (B) to the purple column right over here. And what is that going to tell us? Well, that's going to be (0) times ((-3, 1)). So let me write it that way; it's going to be (0) times ((-3, 1)) plus (5) times ((0, 4)).

And this is going to give us a two by one vector right over here, so you can view it as filling up the first column of this transformation, this composition, I guess you could say. And then let's think about this second vector right over here, ((2, -1)). If you transform that using (B), what are you going to get? You're going to get (2) times ((-3, 1)).

So, I'll write it here: (2) times ((-3, 1)) plus (-1) times ((0, 4)). And this doesn't look like a matrix just yet, but if you work through it, it will become a matrix. For example, if I multiply, well, (0) times all of this is going to be (0) and then (5) times (0) is going to be, let me just write it this way: this would turn into (5) times (0) is (0) and (5) times (4) is (20).

And then this matrix right over here, (2) times ((-3, 1)) is going to be ((-6, 2)), and then we have minus ((0, 4)). And now, if we wanted to write this clearly as a two by two matrix, this would be equal to—and we get a little bit of a drum roll here—the first column is ((0, 20)) and then the second column is going to be, let's see, ((-6 - 0)) is still (-6), and ((2 - 4)) is (-2).

And we're done! We have just created a new transformation matrix that's based on the composition (B(A)). So if you apply transformation (A) first to any vector and then apply transformation (B) to whatever you get there, that is equivalent to just applying this one two by two transformation matrix (B(A)).

More Articles

View All
Interpreting slope of regression line | AP Statistics | Khan Academy
Lizz’s math test included a survey question asking how many hours students spent studying for the test. The scatter plot and trend line below show the relationship between how many hours students spent studying and their score on the test. The line fitted…
2000 Berkshire Hathaway Annual Meeting (Full Version)
Good morning! The first thing I’d like to do is to thank everybody that’s helped us put this on. As you saw in the movie, I think at the time we may have had 45,000 or so people working with Berkshire with 12.8 at headquarters. We’re probably up to about …
Why the Stock Market Might Not Crash...
So I like to think I make pretty down-to-earth investing videos. I generally try and avoid speculation, I avoid trendy stocks, I avoid hype, and instead, I just focus on rational thinking and rational investment. That has led, you know, to a fair bit of c…
Bitcoin: The Currency of The Internet
Over time, things tend to change a lot. Earth was once devoid of life, and then one day, it wasn’t. Horses used to be a normal form of transportation. Fast forward a hundred years, and we now have half a million pounds of metal to sit in as we soar 400 mi…
Alexander the Great takes power | World History | Khan Academy
Going to talk about one of the most famous conquerors in all of human history, and that is Alexander the Great. But before talking about all of the things that he conquered, let’s think about how he got started out, and in particular, how he’s able to con…
Inside the Dark World of Captive Wildlife Tourism | National Geographic
(sighs) Jesus. We came behind the stadium where the elephants perform, and we found this juvenile elephant. He had gaping red wounds at his temple. He also has a broken leg. The other one is chained up. He looks totally emaciated. Skin and bones. And this…