yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Composing matrices | Matrices | Precalculus | Khan Academy


4m read
·Nov 10, 2024

So what I have here is two different transformation matrices. What we're going to think about in this video is: can we construct a new matrix that's based on the composition of these transformations?

Or, a simpler way of saying that is a new transformation that's based on applying one of these transformations first and then the other one right after that.

So first, let's just review what's going on. If we have some random vector here, (a, b), we know that we could view this as (a) times the ((1, 0)) vector, the unit vector in the x direction, plus (b) times the ((0, 1)) vector, which is the unit vector that goes in the vertical direction.

Now, if you were to apply this transformation, capital (A), here, it tells you instead of using ((1, 0)) and ((0, 1)), use these two columns instead. So if you were to apply the transformation here, I guess we could call it (A) for (b'), that is going to be, if you apply the capital (A) transformation matrix, it's going to be (a) times not ((1, 0))—you use ((0, 5)) instead. And then plus (b) times not ((0, 1))—you use ((2, -1)) instead.

So that's just a little bit of review, but what we're going to think about in this video is: what would be the transformation matrix for the composition? And I could write that as (B(A)) right over here, and you might recognize this from function notation where essentially it's saying you would apply the function (A) first and then whatever the output of that is, you would then input that into (B) and you would get the output of that.

And that makes sense because you can view transformation matrices really as functions—functions that map points on the coordinate plane. So in this situation, what would be the transformation matrix that is a composition of these two?

Pause this video and think about that.

All right, well, what would happen is we would first transform any point using these two vectors: the ((0, 5)) and the ((2, -1)) because that's the first transformation we do. And then we would apply this transformation to whatever the resulting vector is. Now, that seems pretty involved, and we don't want to write it in terms of (a) or (b)’s; we just want to write it in terms of a transformation matrix.

So one way to think about it is we can transform each of these vectors that you have in matrix (A), because remember that says what do you turn the vectors ((1, 0)) and ((0, 1)) into. So if we transform ((0, 5)) using the matrix (B) and if we transform ((2, -1)) using the matrix (B) and we put them in their respective columns, we should have the composition of this.

So let me write it this way and create a little bit of space.

So let's say that the composition (B(A)) is equal to, all right, a big two by two matrix right over here. The first thing we can do is apply transformation matrix (B) to the purple column right over here. And what is that going to tell us? Well, that's going to be (0) times ((-3, 1)). So let me write it that way; it's going to be (0) times ((-3, 1)) plus (5) times ((0, 4)).

And this is going to give us a two by one vector right over here, so you can view it as filling up the first column of this transformation, this composition, I guess you could say. And then let's think about this second vector right over here, ((2, -1)). If you transform that using (B), what are you going to get? You're going to get (2) times ((-3, 1)).

So, I'll write it here: (2) times ((-3, 1)) plus (-1) times ((0, 4)). And this doesn't look like a matrix just yet, but if you work through it, it will become a matrix. For example, if I multiply, well, (0) times all of this is going to be (0) and then (5) times (0) is going to be, let me just write it this way: this would turn into (5) times (0) is (0) and (5) times (4) is (20).

And then this matrix right over here, (2) times ((-3, 1)) is going to be ((-6, 2)), and then we have minus ((0, 4)). And now, if we wanted to write this clearly as a two by two matrix, this would be equal to—and we get a little bit of a drum roll here—the first column is ((0, 20)) and then the second column is going to be, let's see, ((-6 - 0)) is still (-6), and ((2 - 4)) is (-2).

And we're done! We have just created a new transformation matrix that's based on the composition (B(A)). So if you apply transformation (A) first to any vector and then apply transformation (B) to whatever you get there, that is equivalent to just applying this one two by two transformation matrix (B(A)).

More Articles

View All
Watching a Rocket Launch at SpaceX with Elon Musk!
That I’ve never seen something like that, and the noise of it when it was going up was insane. I asked Grandpa, “What do you go in it?” and he goes, “What up, guys? Welcome back to the channel! Today, we are on Trump Force One, going to see the Starship r…
How To Work On A Long Term Plan (Without Having One)
There are many people who want to work toward a long-term goal, but they just don’t have one. They don’t know what they’ll be doing in the next five or ten years. They don’t know what life has in store for them. Maybe they’ll be in a different town with a…
See Why This Island is Canada’s Best Kept Secret | National Geographic
I’m the Alice timepiece that I’ve never been Nova Scotia. Nova Scotia! And this is Halifax, the start of my journey. Keys, please! I’m headed for Cape Breton Island to experience, from some of the people there, what makes this place in the world so unique…
Writing geometric series in sigma notation
So we have a sum here of 2 plus 6 plus 18 plus 54, and we could obviously just evaluate it, add up these numbers. But what I want to do is I want to use it as practice for rewriting a series like this using sigma notation. So let’s just think about what’…
Food and energy in organisms | Middle school biology | Khan Academy
Hey, quick question for you. You ever look at a person’s baby pictures and wonder how people go from being small to, well, big? I mean, yes, I get it; people grow up, but here I’m thinking more on the level of the atoms and molecules that make up the body…
TIL: Hummingbirds Are the World's Hungriest Birds | Today I Learned
If you were to use energy as quickly as a hummingbird, you’d have to eat a fridge full of food or about 300 hamburgers every day in order to survive. They use energy so quickly as they fly, so, so fast. A lot of the flowers they feed on are really delicat…