yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing geometric series in sigma notation


2m read
·Nov 11, 2024

So we have a sum here of 2 plus 6 plus 18 plus 54, and we could obviously just evaluate it, add up these numbers. But what I want to do is I want to use it as practice for rewriting a series like this using sigma notation.

So let's just think about what's happening here. Let's see if we can see any pattern from one term to the next. Let's see, to go from two to six, we could say we're adding four, but then we go from six to eighteen; we're not adding four now. We are now adding twelve, so it's not an arithmetic series.

Let's see what of maybe it's a geometric. So to go from two to six, what are we doing? Well, we're multiplying by three. So let me write that we're multiplying by 3 to go to 6. To 18, what are we doing? Well, we're multiplying by 3. To go to 18 to 54, we're multiplying by 3.

So it looks like this in this is indeed a geometric series, and we have a common ratio of 3. So let's rewrite this using sigma notation. So this is going to be the sum, and we could start... well, there's a bunch of ways that we could write it. We could write it as, let's start with k equaling 0.

And so we have our first term, which is 2, so it's 2 times our common ratio to the kth power. So times our common ratio, 3 to the k power. So before I even write how many terms we have here or how high we go with our k, let's see if this makes sense.

When k is equal to 0, there's going to be 2 times 3 to the 0th power, so that's 2 times 1, so that's this first term right there. When k is equal to 1, it'll be 2 times 3 to the first power; well, that's going to be 6.

And then when k is... so this is k equals 0. Let me just... in a different color. So this is k equals 0. I say different color, and then I do the same color. All right, so this is k equals zero; this is k equals one; this is k equals two, and then this would be k equals three, which would be two times three to the third power.

So two times 27 is indeed equal to 54. So we're going to go up to k is... k is equal to 3. So that's one way that we could write this. There are other ways that you could write this. You could write it as... so we're going to still do... we have our first term right over here, but for example, we could write it as our common ratio, and I'll use a different index now.

Let's say to the n minus one power, and instead of starting at zero, I could start at n equals one. But notice it has the same effect. When you say n equals 1, it's 1 minus 1; you get the 0th power, and so we're just... we're increasing all of the indexes by 1.

So instead of going from 0 to 3, we're going from 1 to 4. And you could verify that this is still going to work out because when n is equal to 4, it's 3 to the 4 minus 1 power, so it's still 3 to the third power, which is 27 times 2, which is still 54.

So this is n equals 1, that is n equals 2, that is n equals 3, and that is n equals 4. But either way, these are ways that you could write it using sigma notation.

More Articles

View All
What is risk and return? | Investments and retirement | Financial literacy | Khan Academy
So probably the main thing you will hear when you talk about investing is: What is the return that you got on your investment? Return on investment is often times, people will say ROI, and there’s a lot of different ways of calculating it. But maybe the m…
David Zeevi on Personalized Nutrition Based on Your Gut Microbiome
So today, we have David CV on the podcasts, and you are an author on many papers. But the paper that I initially contacted you about is called “Personalized Nutrition by Prediction of Glycemic Responses,” and this is a quick summary: people eating identic…
Viktor Frankl's Method to Overcome Fear (Paradoxical Intention)
The neurotic who learns to laugh at himself may be on the way to self-management, perhaps to cure. Austrian psychiatrist, philosopher, and author Viktor Frankl spent four years in different concentration camps during the second world war. From the ashes o…
Early Medieval Trade | World History | Khan Academy
In this video, I want to start to answer the question of how did the environment and how did political factors impact trade. That is a really big question that we’re not going to answer in one video, but I want to use a specific example to illustrate the …
Golden Age of Athens, Pericles and Greek Culture | World History | Khan Academy
In other videos, we’ve already talked about how Classical Greece has had an immeasurable impact, not just on Western Civilization, but on civilization as a whole. In order to understand the period that we call Classical Greece, it’s valuable to place it i…
Clearing Everest's Trash - 360 | National Geographic
This is a landfill in the Sagarmatha National Park, home to the world’s tallest peak, Mount Everest. Members of the Sagarmatha Pollution Control Committee, or SPCC, collect and sort trash all the way up to Everest base camp, situated in the Himalayas. Eve…