yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpretting exponential expression


2m read
·Nov 11, 2024

The expression ( 5 * 2^T ) gives the number of leaves in a plant as a function of the number of weeks since it was planted. What does two represent in this expression? So pause this video and see if you can figure it out on your own.

All right, so let's look at the expression right over here. We could write it as defining a function, so we could say leaves as a function of time is equal to ( 5 * 2^T ) power.

And so we could try this out a little bit. If we say, well, what is ( L(0) )? That would be ( T = 0 ); that's when we're 0 weeks after it was planted, so this is right when it was planted. Well, that's ( 5 * 2^0 ), which is just ( 2^0 ) is just one, so it's equal to five.

And so when you see an exponential expression or an exponential function like this, that is why this number out here is often referred to as your initial value. Initial value.

And so let's explore this a little bit more. What is ( L(1) )? What happens after one week? Well, that's going to be ( 5 * 2^1 ), or ( 5 * 2 ). So, going from when it was planted to the first week, we are multiplying by two. The number of leaves doubles.

Well, what happens after two weeks? The number of leaves after two weeks? Well, that's going to be ( 5 * 2^2 ). Well, that's the number that you had in the first week times two. So it looks like every week we are doubling; we are multiplying by two.

And that's why this number right over here, which is what the question is about, the two, this is often referred to as the common ratio. Common ratio. Because between any two successive weeks, the ratio between say week two and week one is two. Week two is double week one, and week one is double week zero.

So let's see which of these choices actually match up to that. There were initially two leaves in the plant? Well, we know that there weren't two leaves in the plant; our initial value was five, so let me cross that one out.

The number of leaves is multiplied by two each week? Well, that's exactly what we just described, so I like that choice.

Let's look at the last one just for good measure. The plant was planted two weeks ago? Well, no, they don't tell us anything about that. This is a general expression for ( T ) weeks after it was planted, so they're not saying when it was actually planted, so we could rule that out. And we feel good about that second choice.

More Articles

View All
What Do You Miss the Most? - Q&A | Live Free or Die
[Music] I would say definitely the number one modern convenience that I really miss the most and that whenever I can take advantage of it I do is a shower. Some of the things I miss about living in society is a hot shower. I miss hot water. I miss showers…
Khan Academy Ed Talks featuring Elisa Villanueva Beard - Wednesday, December 9
Hi everyone! Sal Khan here from Khan Academy. Welcome to Ed Talks on Khan Academy. I know what you’re thinking: What are these Ed Talks? Well, this is kind of a subset of the Homeroom with Sal conversations that are more focused on education and are from …
Water potential worked example
A zucchini squash was peeled and cut into six identical cubes. After being weighed, each cube was soaked in a different sucrose solution for 24 hours in an open container and at a constant temperature of 21 degrees Celsius. The cubes were then removed fro…
Homeroom with Sal & Vas Narasimhan - Wednesday, July 8
Hi everyone! Welcome to our homeroom live stream. I’m very excited about the conversation we’re going to have in a few minutes. But before that, I will give my standard announcement: a reminder that Khan Academy is a not-for-profit organization with a mis…
Restoring the River's Flow | DamNation
Dropped my gear off, schlepped it all out over the fence, drove back down, parked the van, got on my bicycle, rode up there, stashed it. Gl’s canyons near vertical; it’s very steep, it’s dark, it’s a damp slippery dam with a 200t abyss right below. So we’…
The Illusion of Self
Recently, I was scrolling through old pictures, and I found the picture from when I was a little kid. I took the picture and held it up to my face in front of a mirror, and I realized, wow, I look nothing like that kid in the picture. We don’t have the sa…