yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: coefficient in Maclaurin polynomial | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Nth derivative of g at x equals 0 is given by. So the nth derivative of G evaluated at x equal 0 is equal to n + 7 over n 3r for n is greater than or equal to 1. What is the coefficient for the term containing x^2 in the McLaurin series of G?

So let's just think about the McLaurin series for G. If I were to have my function G of x, the McLaurin series could say approximately equal to, especially if I'm not going to list out all of the terms, is going to be equal to. Well, it's going to be equal to G of 0 plus G Prime of 0 * x plus G Prime Prime of 0 divided by. I could say 2 factorial, but that's just 2 * x^2.

And that's about as far as we go because we just have to think about what is the coefficient for the term containing x. If they said what's the coefficient for the term containing x to the 3, I would keep going. I'd go G Prime. I would take the third derivative evaluated at 0 over 3 factorial. I could view this as a factorial too, but that just evaluates to 2. I could view this as 1 factorial. I could view this as 0 factorial, just so you see it's a consistent idea here.

And I could, of course, keep on going, but we just care about—they're just asking us what is the coefficient for the term containing x squared. So they just want us to figure out this. What is this thing right over here?

So now that we need to figure out what is the second derivative of G evaluated at x equals 0, well, they tell us that over here. It's a little bit unconventional where they give us a formula, a general formula for any derivative evaluated at x equals 0, but that's what they're telling us here.

In this case, the N isn't zero; the N is the derivative we're taking, and that's going to be our second derivative. So this is... if I wanted to figure out G, if I am figuring out the second derivative, I could write it like that evaluated at 0 or I could write it like this just so the notation is consistent.

I could write it like that. The second derivative evaluated at x equals 0 is going to be equal to—well, our n is 2, so this is going to be the square root of 2 + 7 over 2 to the 3 power. So 2 + 7 is 9. Take the principal root of that; it's going to give us pos3 over 2 cubed, which is 8.

So this part right over here is 38. The whole coefficient is going to be 38, that’s this numerator divided by 2, which of course is equal to 3 over 16, and we're done. They didn't want us to figure out, you know, a couple of terms of this which we could call the McLaurin polynomial, an nth degree McLaurin polynomial. They just wanted to find one coefficient right here, the coefficient on the second-degree term, which we just figured out is 3 over 16.

More Articles

View All
Warren Buffett: The Big Problem with Dividend Investing
Why won’t you pay a dividend to your shareholders? Well, we think our shareholders 5 years from now will be wealthier counting what they would get from the reinvestment of the dividend. We think they’ll be wealthier if we hold on to the money now. We may…
2005 Entrepreneurship Conference - Taking on the Challenge: Jeffrey Bezos, Amazon
I want to talk a little bit about how we think about innovation at Amazon.com and, uh, give you a couple of examples from the world. This is the whiffle ball and the guy, his name is David Nelson Malany, and in 1953 he took a Cody perfume package and, ou…
Five Firsts for Mars InSight
This Monday, November 26, around noon Pacific Time, NASA will attempt to land a spacecraft called InSight on Mars. While a lot of previous missions have looked for life, evidence of past life, water, liquid water, and so on, this is the first mission dedi…
Charlie Munger's SCARY Inflation Warning (2022)
What makes life interesting is we don’t know how it’s going to work out. I think we do know we’re flirting with serious trouble. Inflation is at such high levels right now that those of us under the age of 40 have never even lived through a period of such…
How to Help Small Businesses During COVID-19 | Ask Mr. Wonderful #22 Kevin O'Leary & Maria Sharapova
I Mr. Wonderful here, and welcome to another episode of Ask Mr. Wonderful. Now, you know what I love to do time to time is to invite a guest onto the show to help me answer all of your questions. I’m always amazed by how many questions we get and where we…
Cooking a Chicken in a Particle Accelerator #kurzgesagt #shorts
Cooking a chicken with a particle accelerator, how would that work? First, we need a raw chicken. That’s easy. Then, we need a particle accelerator. So, let’s put a chicken in it. To avoid collisions between air molecules and beam particles, we have to p…