yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Mean of sum and difference of random variables | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Let's say that I have a random variable X, which is equal to the number of dogs that I see in a day. Random variable Y is equal to the number of cats that I see in a day. Let's say I also know what the mean of each of these random variables are, the expected value.

So, the expected value of X, which I could also denote as the mean of our random variable X, let's say I expect to see three dogs a day. Similarly, for the cats, the expected value of Y is equal to, I could also denote that as the mean of Y, is going to be equal to, and this is just for the sake of argument, let's say I expect to see four cats a day.

In previous videos, we defined how do you take the mean of a random variable or the expected value of a random variable. What we're going to think about now is what would be the expected value of X plus Y, or another way of saying that, the mean of the sum of these two random variables.

Well, it turns out—and I'm not proving it just yet—that the mean of the sum of random variables is equal to the sum of the means. So, this is going to be equal to the mean of random variable X plus the mean of random variable Y.

In this particular case, if I were to say, well, what's the expected number of dogs and cats that I would see in a given day? I would add these two means: it would be 3 + 4, and it would be equal to 7. So, in this particular case, it is equal to 3 + 4, which is equal to 7.

Similarly, if I were to ask you the difference, if I were to say, well, how many more cats in a given day would I expect to see than dogs? The expected value of Y minus X, what would that be? Well, intuitively, you might say, well, hey, if we can add random variables, if the expected value of the sum is the sum of the expected values, then the expected value—or the mean—of the difference will be the difference of the means, and that is absolutely true.

So, this is the same thing as the mean of Y minus X, which is equal to the mean of Y, is going to be equal to the mean of Y minus the mean of X. In this particular case, it would be equal to 4 - 3, which is equal to 1.

So, another way of thinking about this intuitively is I would expect to see, on a given day, one more cat than dogs. Now, the example that I've just used—this is discrete random variables. On a given day, I wouldn't see 2.2 dogs or pi dogs. The expected value itself does not have to be a whole number because you could, of course, average it over many days.

But this same idea—that the mean of a sum is the same thing as the sum of means, and that the mean of a difference of random variables is the same as the difference of the means—in a future video, I'll do a proof of this.

More Articles

View All
Analyzing mistakes when finding extrema (example 1) | AP Calculus AB | Khan Academy
Pamela was asked to find where ( h(x) = x^3 - 6x^2 + 12x ) has a relative extremum. This is her solution. So, step one, it looks like she tried to take the derivative. Step two, she tries to find the solution to find where the derivative is equal to zero…
Geometric series word problems: hike | Algebra 2 | Khan Academy
We’re told Sloan went on a four-day hiking trip. Each day she walked 20 more than the distance that she walked the day before. She walked a total of 27 kilometers. What is the distance Sloan walked on the first day of the trip? It says to round our final …
FRENCH KISS A ROBOT! Mind Blow #16
The N64 upside down looks like a koala’s face. And here’s a wall that changes color when you pee on it. Vsauce. Kevin here. This is Mind Blow. This jet pack of sorts just set a record by flying for seven straight minutes. The company claims their current…
Perfect Your Desires
One of the things I’ve learned relatively recently in life is that it’s way more important to perfect your desires if you want to do something than it is to try to do that thing when your desire is not 100%. An example would be like… you know, self-disci…
Simulation showing value of t statistic | Confidence intervals | AP Statistics | Khan Academy
In a previous video, we talked about trying to estimate a population mean with a sample mean and then constructing a confidence interval about that sample mean. We talked about different scenarios where we could use a z table plus the true population stan…
Lion Rapid Response Team | Best Job Ever
[Music] I’m a first responder for lions in Gorong Goa National Park. Every day, we’re out there working with lions. Very slowly, let’s just see what she’s up to. Gorong Goa National Park is undergoing a remarkable recovery after two decades of civil war,…