yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Mean of sum and difference of random variables | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Let's say that I have a random variable X, which is equal to the number of dogs that I see in a day. Random variable Y is equal to the number of cats that I see in a day. Let's say I also know what the mean of each of these random variables are, the expected value.

So, the expected value of X, which I could also denote as the mean of our random variable X, let's say I expect to see three dogs a day. Similarly, for the cats, the expected value of Y is equal to, I could also denote that as the mean of Y, is going to be equal to, and this is just for the sake of argument, let's say I expect to see four cats a day.

In previous videos, we defined how do you take the mean of a random variable or the expected value of a random variable. What we're going to think about now is what would be the expected value of X plus Y, or another way of saying that, the mean of the sum of these two random variables.

Well, it turns out—and I'm not proving it just yet—that the mean of the sum of random variables is equal to the sum of the means. So, this is going to be equal to the mean of random variable X plus the mean of random variable Y.

In this particular case, if I were to say, well, what's the expected number of dogs and cats that I would see in a given day? I would add these two means: it would be 3 + 4, and it would be equal to 7. So, in this particular case, it is equal to 3 + 4, which is equal to 7.

Similarly, if I were to ask you the difference, if I were to say, well, how many more cats in a given day would I expect to see than dogs? The expected value of Y minus X, what would that be? Well, intuitively, you might say, well, hey, if we can add random variables, if the expected value of the sum is the sum of the expected values, then the expected value—or the mean—of the difference will be the difference of the means, and that is absolutely true.

So, this is the same thing as the mean of Y minus X, which is equal to the mean of Y, is going to be equal to the mean of Y minus the mean of X. In this particular case, it would be equal to 4 - 3, which is equal to 1.

So, another way of thinking about this intuitively is I would expect to see, on a given day, one more cat than dogs. Now, the example that I've just used—this is discrete random variables. On a given day, I wouldn't see 2.2 dogs or pi dogs. The expected value itself does not have to be a whole number because you could, of course, average it over many days.

But this same idea—that the mean of a sum is the same thing as the sum of means, and that the mean of a difference of random variables is the same as the difference of the means—in a future video, I'll do a proof of this.

More Articles

View All
Formulas and units: Comparing rates | Working with units | Algebra I | Khan Academy
We’re told that Hannah and Martine each got a plant for their home. Hannah measured that her plant grows on average two centimeters per week. Martine measured that her plant grows on average three millimeters per day. Which plant grows faster? Pause this…
Which Sales Strategy Is Best For Your Startup?
Hi, my name is Pete. I’m a visiting group partner at Y Combinator and formerly co-founder and CTO at Optimizely. Today we’re going to talk about two different ways to sell your products to large organizations: Bottoms Up and Top Down. This is versus selli…
Why Reflection and Meditation are Essential
People get overwhelmed so easily these days. There’s so much coming at us, and we let it come at us through technology very often. You’ve been a lifelong meditator. I love if you just tell us how important that’s been, what meditation has meant to you, an…
Can China Reverse the Economic Crisis?
As you’ve probably seen over the past few months, China’s economy has suffered some pretty serious setbacks, and its citizens have felt the impact. As this chart from Simply Wall Street shows, most sectors have been very deep in the red over the past 12 m…
Five Firsts for Mars InSight
This Monday, November 26, around noon Pacific Time, NASA will attempt to land a spacecraft called InSight on Mars. While a lot of previous missions have looked for life, evidence of past life, water, liquid water, and so on, this is the first mission dedi…
Alex Honnold & Hazel Findlay Ascend 3,750ft | Arctic Ascent with Alex Honnold | National Geographic
This is it. It’s just me and Hazel, and Ingmikortilaq. Our goal for today is to get as high as we can, and then camp. Then tomorrow, it’ll be a big push up the headwall to the summit. Each piece of rock is different, and each wall is different, and it’s b…