yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Mean of sum and difference of random variables | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Let's say that I have a random variable X, which is equal to the number of dogs that I see in a day. Random variable Y is equal to the number of cats that I see in a day. Let's say I also know what the mean of each of these random variables are, the expected value.

So, the expected value of X, which I could also denote as the mean of our random variable X, let's say I expect to see three dogs a day. Similarly, for the cats, the expected value of Y is equal to, I could also denote that as the mean of Y, is going to be equal to, and this is just for the sake of argument, let's say I expect to see four cats a day.

In previous videos, we defined how do you take the mean of a random variable or the expected value of a random variable. What we're going to think about now is what would be the expected value of X plus Y, or another way of saying that, the mean of the sum of these two random variables.

Well, it turns out—and I'm not proving it just yet—that the mean of the sum of random variables is equal to the sum of the means. So, this is going to be equal to the mean of random variable X plus the mean of random variable Y.

In this particular case, if I were to say, well, what's the expected number of dogs and cats that I would see in a given day? I would add these two means: it would be 3 + 4, and it would be equal to 7. So, in this particular case, it is equal to 3 + 4, which is equal to 7.

Similarly, if I were to ask you the difference, if I were to say, well, how many more cats in a given day would I expect to see than dogs? The expected value of Y minus X, what would that be? Well, intuitively, you might say, well, hey, if we can add random variables, if the expected value of the sum is the sum of the expected values, then the expected value—or the mean—of the difference will be the difference of the means, and that is absolutely true.

So, this is the same thing as the mean of Y minus X, which is equal to the mean of Y, is going to be equal to the mean of Y minus the mean of X. In this particular case, it would be equal to 4 - 3, which is equal to 1.

So, another way of thinking about this intuitively is I would expect to see, on a given day, one more cat than dogs. Now, the example that I've just used—this is discrete random variables. On a given day, I wouldn't see 2.2 dogs or pi dogs. The expected value itself does not have to be a whole number because you could, of course, average it over many days.

But this same idea—that the mean of a sum is the same thing as the sum of means, and that the mean of a difference of random variables is the same as the difference of the means—in a future video, I'll do a proof of this.

More Articles

View All
Homeroom With Sal & Mayor Sam Liccardo - Wednesday, June 3
Hi everyone, welcome to the daily homeroom livestream. For those of you all who are wondering what this is, this is a series of conversations that we’ve started over the last few months. It was, I guess, catalyzed by COVID, but it’s a way of staying in co…
Homeroom with Sal & Superintendent Austin Beutner - Wednesday, September 30
Hi everyone! Sal Khan here from Khan Academy. Welcome to our homeroom live stream. I’m very excited about today’s guest, Superintendent Austin Buettner from Los Angeles Unified School District. So already, start thinking about some questions you might ha…
Why It’s Hard to Forecast the Weather | National Geographic
People have short memories, and you’re only as good as your last forecast. So, if you mess up a forecast, especially a high impact forecast, people will remember that. A 3-day forecast today is about as accurate as a 1-day forecast was in the 1970s. If yo…
Crossing a Snow Packed River | Primal Survivor
The big danger here is I could fall through, and depending on how deep it is, if it’s deep, that river could suck me under the ice. So, I’ve got to come up with a plan. This is where a little bit of, uh, mountaineering strategy comes in. Get my snow shov…
Critiquing Startup Websites With Instacart's First Designer
In this video, a special guest and I will be taking a look at companies funded by Y Combinator and giving our feedback on the design of their company’s website. Welcome to Design Review! My guest this week is Zayn Ali. He was the first product designer at…
How a young Bill Clinton made waves during his presidential campaign | Rewind the '90s
(Crowd cheering) NARRATOR: It’s 1992, President George H.W. Bush is up for re-election. With a squeaky clean image, he’s had some of the highest approval ratings of any president. Then, a political bad boy joins the race. (Jazzy saxophone music) AJ BENZ…