yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Secant line with arbitrary difference | Derivatives introduction | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

A secant line intersects the curve ( y ) equal to the natural log of ( x ) at two points with ( x ) coordinates ( 2 ) and ( 2 + h ). What is the slope of the secant line?

Well, they're giving us two points on this line. It might not be immediately obvious, but they're giving us the points when ( x ) is equal to ( 2 ) and when ( x ) is equal to ( 2 + h ). What is ( y )? Well, they tell us ( y ) is equal to the natural log of ( x ), so in this case, it is going to be ( \ln(2) ).

And when ( x ) is equal to ( 2 + h ), what is ( y )? Well, ( y ) is always going to be the natural log of whatever ( x ) is, so it's going to be ( \ln(2 + h) ). These are two points that sit on the secant line. This happens to be where the secant line intersects our curve, but these are two points on the line.

If you know two points on the line, you will then be able to figure out the slope of that line. We can just remind ourselves that a slope is just change in ( y ) over change in ( x ). What is this going to be?

Well, if we view the second one as our end point, our change in ( y ) going from ( \ln(2) ) to ( \ln(2 + h) ), so our change in ( y ) is going to be our end point, ( \ln(2 + h) ), minus our starting point or our end ( y )-value minus our starting ( y )-value, ( \ln(2) ). Our change in ( x ) is going to be our ending ( x )-value, ( 2 + h ), minus our starting ( x )-value, ( 2 ).

Of course, these twos cancel out. If we look here, it looks like we have a choice that directly matches what we just wrote. This right over here is ( \frac{\ln(2 + h) - \ln(2)}{h} ).

Now, if you want to visualize this a little bit more, we could draw. We could draw a little bit. I'm going to clear this out so I have space to draw the graph just so you can visualize that this is a secant line.

Let me draw my ( y )-axis and let me draw my ( x )-axis. ( y = \ln(x) ) is going to look something like this. I'm obviously hand drawing it, so not a great drawing right over here.

When we have the point ( (2, \ln(2)) ), that would be, let's say it's over here. So if this is ( 2 ), then this right over here is ( \ln(2) ). So that's the point ( (2, \ln(2)) ).

Then we have some other point, just noting in the abstract ( 2 + h ). So it's ( 2 + something ), so let's say that is ( (2 + h, \ln(2 + h)) ).

The exercise that we just did is finding the slope of the line that connects these two, so the line will look something like that. The way that we did this is we figured out, okay, what is our change in ( y )?

We are going from ( y = \ln(2) ) to ( y = \ln(2 + h) ). So our change in ( y ) is ( \ln(2 + h) - \ln(2) ). Our change in ( x ) is going from ( 2 ) to ( 2 + h ).

So our change in ( x ) we just increased by ( h ); we're going from ( 2 ) to ( 2 + h ). Our change in ( x ) is equal to ( h ).

So the slope of the secant line, the slope of this secant line that intersects our graph in two points, is going to be change in ( y ) over change in ( x ), which is once again exactly what we have over there.

More Articles

View All
What If Everyone JUMPED At Once?
Hey, Vsauce. Michael here. And what if every single person on Earth jumped at the exact same time? Could it cause an earthquake or would we not even be able to tell? Well, first things first, let’s talk about the Earth’s rotation. The Earth spins, that’s …
Natural, cyclical, structural, and frictional unemployment rates | AP Macroeconomics | Khan Academy
[Instructor] We’ve already discussed the notion of unemployment at length in other videos. And what we’re going to do in this video is dig a little bit deeper and think about what makes up the unemployment rate? And just as a review, the unemployment ra…
Scaling functions horizontally: examples | Transformations of functions | Algebra 2 | Khan Academy
We are told this is the graph of function f. Fair enough. Function g is defined as g of x is equal to f of 2x. What is the graph of g? So, pause this video and try to figure that out on your own. All right, now let’s work through this. The way I will thi…
Chef Wonderful - How To Make Crepe Recipe | So Yummy Inspired Desserts
Okay, chef wonderful, here we’re starting the crepes Nambe, the amazing flambe. Now look, if you have to, every bite him. This is not an easy dish, but if you really want to get into the most incredible dessert on earth, everything has to be fresh. I like…
DINOSAUR SCIENCE! feat. Chris Pratt and Jack Horner
Hey, Vsauce. Michael here. What are monsters? Scary, unnatural things? Yes, but they’re more than that and we knew that back when we named them. The word monster comes from the same root word as demonstrate and demonstrative, monere, meaning to teach, to …
The Warning Of Hyper Inflation | $2 Trillion Stimulus
What’s up you guys, it’s Graham here. So I’m gonna be attempting to answer one of the most difficult questions that I’ve been getting asked recently here in the channel after this new stimulus plan was recently passed, and that would be: Am I still wearin…