yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculating Gravitational Attraction


2m read
·Nov 10, 2024

Most people recognize that the gravitational force attracts them towards the Earth and keeps them stuck on the planet. But the gravitational force does so much more than that; it attracts any object with mass towards any other object with mass.

So, for example, this table is attracted gravitationally to the chair, and the chair is attracted to the table. This is a beautiful symmetric idea because it means that every object you can see around you is attracted to you gravitationally, and you are attracted to it. The reason we don't notice that attraction is because the force is so small.

So today, I'd like to show you how to calculate the size of the force of attraction between any two masses. In this example, we'll call this mass one and this object mass two. The force is proportional to mass one, so the larger mass one is, the bigger the force is. The force is also proportional to mass two; the bigger that mass is, the bigger the force is.

Now, the force is what we call inversely proportional to the distance between them squared. So if the distance between their centers is called r, then the further apart they are, the smaller this force is, and that makes sense. Now, to make this a true equality, we need to add Big G, the universal gravitational constant. This is just a number, a constant of the universe, which tells us how strong the gravitational force is. This number G is 6.67 * 10^-11 Newton m² per kilogram².

As you can see, it's a pretty small number, so the force is going to be relatively small. So let's do an example. Let's calculate the force of attraction between me and, say, João.

"Hello, this is my twin brother."

"Hi everybody!"

So the force F is going to be equal to the gravitational constant 6.67 * 10^-11 times my mass, which is 70 kg, times João's mass, which is 70 kg.

"Oh no, I thought you were putting on a little weight!"

"No, hey, 70 kg."

And divide by the distance between us, which is what, do you say, about 1.5 m?

"Don't forget to square it!"

"I wasn't going to forget!"

Okay, so this works out to be 1.45 * 10^-7 Newtons. There is a tenth of a millionth of a Newton attracting me and João. And that's not all, dude. Now, a Newton is the amount of force...

More Articles

View All
Monopolies vs. perfect competition | Microeconomics | Khan Academy
In this video, we’re going to dig a little bit into the idea of what it means to be a monopoly. To help us appreciate that, let’s think about the spectrum on which firms can be. This is going to be my spectrum right over here. Now, at the left end, we ca…
Finding inverse functions: radical | Mathematics III | High School Math | Khan Academy
[Voiceover] So we’re told that h of x is equal to the negative cube root of three x minus six plus 12. And what we wanna figure out is, what is the inverse of h? So what is… What is h inverse of x going to be equal to? And like always, pause the video and…
One-step multiplication equations: fractional coefficients | 6th grade | Khan Academy
Let’s say that we have the equation two-fifths x is equal to ten. How would you go about solving that? Well, you might be thinking to yourself it would be nice if we just had an x on the left-hand side instead of a two-fifths x, or if the coefficient on t…
Khan Academy India Talent Search 2017
Hi, I’m Sal Khan, founder of the Khan Academy, and I just want to let you know about our India talent search. As you might know, Khan Academy, we’re a not-for-profit with a mission of providing a free, world-class education for anyone, anywhere. To us, t…
Simplifying rational expressions: higher degree terms | High School Math | Khan Academy
Let’s see if we can simplify this expression, so pause the video and have a try at it, and then we’re going to do it together right now. All right, so when you look at this, it looks like both the numerator and the denominator, they might—you might be ab…
Daylight Saving Time Explained
Every year some countries move their clocks forward in the spring only to move them back in the autumn. To the vast majority of the world who doesn’t participate in this odd clock fiddling, it seems a baffling thing to do. So what’s the reason behind it? …