yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculating Gravitational Attraction


2m read
·Nov 10, 2024

Most people recognize that the gravitational force attracts them towards the Earth and keeps them stuck on the planet. But the gravitational force does so much more than that; it attracts any object with mass towards any other object with mass.

So, for example, this table is attracted gravitationally to the chair, and the chair is attracted to the table. This is a beautiful symmetric idea because it means that every object you can see around you is attracted to you gravitationally, and you are attracted to it. The reason we don't notice that attraction is because the force is so small.

So today, I'd like to show you how to calculate the size of the force of attraction between any two masses. In this example, we'll call this mass one and this object mass two. The force is proportional to mass one, so the larger mass one is, the bigger the force is. The force is also proportional to mass two; the bigger that mass is, the bigger the force is.

Now, the force is what we call inversely proportional to the distance between them squared. So if the distance between their centers is called r, then the further apart they are, the smaller this force is, and that makes sense. Now, to make this a true equality, we need to add Big G, the universal gravitational constant. This is just a number, a constant of the universe, which tells us how strong the gravitational force is. This number G is 6.67 * 10^-11 Newton m² per kilogram².

As you can see, it's a pretty small number, so the force is going to be relatively small. So let's do an example. Let's calculate the force of attraction between me and, say, João.

"Hello, this is my twin brother."

"Hi everybody!"

So the force F is going to be equal to the gravitational constant 6.67 * 10^-11 times my mass, which is 70 kg, times João's mass, which is 70 kg.

"Oh no, I thought you were putting on a little weight!"

"No, hey, 70 kg."

And divide by the distance between us, which is what, do you say, about 1.5 m?

"Don't forget to square it!"

"I wasn't going to forget!"

Okay, so this works out to be 1.45 * 10^-7 Newtons. There is a tenth of a millionth of a Newton attracting me and João. And that's not all, dude. Now, a Newton is the amount of force...

More Articles

View All
Geometric constructions: parallel line | Congruence | High school geometry | Khan Academy
Let’s say that we have a line. I’m drawing it right over there, and our goal is to construct another line that is parallel to this line that goes through this point. How would we do that? Well, the way that we can approach it is by creating what will even…
Free Solo 360 | National Geographic
Anybody could conceivably die on any given day, and we’re all gonna die eventually. [Applause] So, Lange just makes it far more immediate. You accept the fact that if anything goes wrong, you’re going to die, and that’s that. [Music] I wasn’t the kind of…
3d curl formula, part 1
So I’ve spent a couple of videos laying down the foundation for what three-dimensional curl is trying to represent, and here I’m going to go ahead and talk about how you actually compute it. So, 3D curl is the kind of thing that you take with regards to …
The development of an American culture | AP US History | Khan Academy
In this video, I’m going to take some time to talk about the culture of the young United States that developed in the early 19th century. At the beginning of this period, most of the dominant artistic and cultural productions in the United States—the pain…
Node voltage method (steps 1 to 4) | Circuit analysis | Electrical engineering | Khan Academy
We’re going to talk about a really powerful way to analyze circuits called the node voltage method. Before we start talking about what this method is, we’re going to talk about a new term called a node voltage. So far, we already have the idea of an elem…
Phosphorous cycle | Ecology | Khan Academy
So let’s talk a little bit about the element phosphorus and its importance to life and how it cycles through living systems. We’re going to talk about the phosphorus cycle. So first, it’s important to appreciate that phosphorus is a very reactive element…