yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculating Gravitational Attraction


2m read
·Nov 10, 2024

Most people recognize that the gravitational force attracts them towards the Earth and keeps them stuck on the planet. But the gravitational force does so much more than that; it attracts any object with mass towards any other object with mass.

So, for example, this table is attracted gravitationally to the chair, and the chair is attracted to the table. This is a beautiful symmetric idea because it means that every object you can see around you is attracted to you gravitationally, and you are attracted to it. The reason we don't notice that attraction is because the force is so small.

So today, I'd like to show you how to calculate the size of the force of attraction between any two masses. In this example, we'll call this mass one and this object mass two. The force is proportional to mass one, so the larger mass one is, the bigger the force is. The force is also proportional to mass two; the bigger that mass is, the bigger the force is.

Now, the force is what we call inversely proportional to the distance between them squared. So if the distance between their centers is called r, then the further apart they are, the smaller this force is, and that makes sense. Now, to make this a true equality, we need to add Big G, the universal gravitational constant. This is just a number, a constant of the universe, which tells us how strong the gravitational force is. This number G is 6.67 * 10^-11 Newton m² per kilogram².

As you can see, it's a pretty small number, so the force is going to be relatively small. So let's do an example. Let's calculate the force of attraction between me and, say, João.

"Hello, this is my twin brother."

"Hi everybody!"

So the force F is going to be equal to the gravitational constant 6.67 * 10^-11 times my mass, which is 70 kg, times João's mass, which is 70 kg.

"Oh no, I thought you were putting on a little weight!"

"No, hey, 70 kg."

And divide by the distance between us, which is what, do you say, about 1.5 m?

"Don't forget to square it!"

"I wasn't going to forget!"

Okay, so this works out to be 1.45 * 10^-7 Newtons. There is a tenth of a millionth of a Newton attracting me and João. And that's not all, dude. Now, a Newton is the amount of force...

More Articles

View All
REVERSE PSYCHOLOGY | 13 LESSONS on how to use REJECTION to your favor | Marcus Aurelius STOICISM
Have you ever had a door slammed shut in your face only to realize it was the best thing that could have happened to you? Today, we’re going to explore the skill of overcoming rejection head-on, drawing inspiration from the teachings of the stoic philosop…
Quadratic approximation example
When we last left off in the riveting saga of quadratic approximations of multivariable functions, we were approximating a two-variable function f of x, y, and we ended up with this pretty monstrous expression. Because it’s written in its full abstract fo…
Why Millennials Should NOT Invest
What’s up, you guys? It’s Graham here. So, as many of you know, I spend a lot of time on the internet. Like, half my day is spent browsing Reddit, reading up on investments, watching YouTube videos, and reacting to bad spending habits. I do all of this be…
Derivative of log_x (for any positive base a­1) | AP Calculus AB | Khan Academy
I know from previous videos that the derivative with respect to x of the natural log of x is equal to 1 / x. What I want to do in this video is use that knowledge that we’ve seen in other videos to figure out what the derivative with respect to x is of a…
Physical and chemical changes | Chemical reactions | High school chemistry | Khan Academy
So what we have are three different pictures of substances undergoing some type of change, and what we’re going to focus on in this video is classifying things as either being physical changes or chemical changes. You might have already thought about this…
How Giraffes are Fed at Disney's Animal Kingdom | Magic of Disney's Animal Kingdom
Another beautiful Savannah morning at Disney’s Animal Kingdom theme park. Like every day, the residents are hungry. Basically, my job is one of the cooler jobs we have here on the team. I get to feed everybody today. With over 100 animals on the savannah…