yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculating Gravitational Attraction


2m read
·Nov 10, 2024

Most people recognize that the gravitational force attracts them towards the Earth and keeps them stuck on the planet. But the gravitational force does so much more than that; it attracts any object with mass towards any other object with mass.

So, for example, this table is attracted gravitationally to the chair, and the chair is attracted to the table. This is a beautiful symmetric idea because it means that every object you can see around you is attracted to you gravitationally, and you are attracted to it. The reason we don't notice that attraction is because the force is so small.

So today, I'd like to show you how to calculate the size of the force of attraction between any two masses. In this example, we'll call this mass one and this object mass two. The force is proportional to mass one, so the larger mass one is, the bigger the force is. The force is also proportional to mass two; the bigger that mass is, the bigger the force is.

Now, the force is what we call inversely proportional to the distance between them squared. So if the distance between their centers is called r, then the further apart they are, the smaller this force is, and that makes sense. Now, to make this a true equality, we need to add Big G, the universal gravitational constant. This is just a number, a constant of the universe, which tells us how strong the gravitational force is. This number G is 6.67 * 10^-11 Newton m² per kilogram².

As you can see, it's a pretty small number, so the force is going to be relatively small. So let's do an example. Let's calculate the force of attraction between me and, say, João.

"Hello, this is my twin brother."

"Hi everybody!"

So the force F is going to be equal to the gravitational constant 6.67 * 10^-11 times my mass, which is 70 kg, times João's mass, which is 70 kg.

"Oh no, I thought you were putting on a little weight!"

"No, hey, 70 kg."

And divide by the distance between us, which is what, do you say, about 1.5 m?

"Don't forget to square it!"

"I wasn't going to forget!"

Okay, so this works out to be 1.45 * 10^-7 Newtons. There is a tenth of a millionth of a Newton attracting me and João. And that's not all, dude. Now, a Newton is the amount of force...

More Articles

View All
Ways to manage financial risk | Insurance | Financial literacy | Khan Academy
So, let’s talk a little bit about the different ways that you can manage risk. It’s generally going to fall into a few categories. You can obviously try to avoid the risk altogether or reduce it. You could say, “Alright, that risk is there, but I’m going …
Getting interviewed by my interns.
Josh: “Have any more questions? Can you expand more about how Co impacted the industry and the lasting effects we still see today? When Co first hit us, everybody thought the end of the world was here, right? Everybody locked themselves in the houses; th…
Answering Google's Most Asked Questions of 2022
For most of Google’s relatively short existence, we’ve searched small, silly, insignificant questions - things like how to tell if a papaya is ripe. The color is almost fully yellow, and the feeling is slightly soft. Don’t forget to scoop out the seeds! S…
Series resistors | Circuit analysis | Electrical engineering | Khan Academy
Now that we have our collection of components, our favorite batteries and resistors, we can start to assemble these into some circuits. Here’s a circuit shown here; it has a battery and it has three resistors in a configuration that’s called a series resi…
Partial sums: term value from partial sum | Series | AP Calculus BC | Khan Academy
We’re told that the nth partial sum of the series from N equals one to infinity of a sub n is given by, and so the sum of the first n terms is N squared plus 1 over n plus 1. They want us to figure out what is the actual seventh term. And like always, pau…
How I Manage My Time To Make Over $1 MillIon Per Year
What’s up you guys? It’s Graham here! So, the last year, a lot has happened. This channel grew from 200,000 subscribers to now over 1 million subscribers! I also started a second channel, which posts an additional four times a week. I’m also still sellin…