yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculating Gravitational Attraction


2m read
·Nov 10, 2024

Most people recognize that the gravitational force attracts them towards the Earth and keeps them stuck on the planet. But the gravitational force does so much more than that; it attracts any object with mass towards any other object with mass.

So, for example, this table is attracted gravitationally to the chair, and the chair is attracted to the table. This is a beautiful symmetric idea because it means that every object you can see around you is attracted to you gravitationally, and you are attracted to it. The reason we don't notice that attraction is because the force is so small.

So today, I'd like to show you how to calculate the size of the force of attraction between any two masses. In this example, we'll call this mass one and this object mass two. The force is proportional to mass one, so the larger mass one is, the bigger the force is. The force is also proportional to mass two; the bigger that mass is, the bigger the force is.

Now, the force is what we call inversely proportional to the distance between them squared. So if the distance between their centers is called r, then the further apart they are, the smaller this force is, and that makes sense. Now, to make this a true equality, we need to add Big G, the universal gravitational constant. This is just a number, a constant of the universe, which tells us how strong the gravitational force is. This number G is 6.67 * 10^-11 Newton m² per kilogram².

As you can see, it's a pretty small number, so the force is going to be relatively small. So let's do an example. Let's calculate the force of attraction between me and, say, João.

"Hello, this is my twin brother."

"Hi everybody!"

So the force F is going to be equal to the gravitational constant 6.67 * 10^-11 times my mass, which is 70 kg, times João's mass, which is 70 kg.

"Oh no, I thought you were putting on a little weight!"

"No, hey, 70 kg."

And divide by the distance between us, which is what, do you say, about 1.5 m?

"Don't forget to square it!"

"I wasn't going to forget!"

Okay, so this works out to be 1.45 * 10^-7 Newtons. There is a tenth of a millionth of a Newton attracting me and João. And that's not all, dude. Now, a Newton is the amount of force...

More Articles

View All
Why Robinhood Blocked Gamestop. (Full Explanation)
We made the decision, uh, in the morning to limit the buying of about 13 securities on our platform. So, to be clear, uh, customers could still sell those securities if they had positions in them, and they could also trade in the thousands of other securi…
You Will Go Broke If You Do These Things (Beginner Investors, Take Note!)
Hey guys, before we got started with this video, I just wanted to let you know that, um, all November long I will be doing Movember. So hopefully, over the next few weeks, you’ll start to see in my videos, I’ll start to be getting a little bit of a mo. I …
solo trip in Italy 🇮🇹 |Having a lunch with a stranger 🍝
Even though I hate solo trips, in order to take Italian medical admission tests, I needed to go to Rome alone. Here is the journey, enjoy! Hi guys! Hi guys! Hi guys! Guess who is in Rome? Yes, I am in Rome! Even though I visited Milan back in high school…
Play in a City That Is Both Urban and Wild | National Geographic
[Music] Even the oldest of places can be seen through new eyes. Quebec City brings to mind European vibe, history, and old architecture. This city is all about 400 years old, actually. So just wandering each neighborhood is an experience in itself. After…
Bond enthalpies | Thermodynamics | AP Chemistry | Khan Academy
Bond enthalpy is the change in enthalpy, or delta H, for breaking a particular bond in one mole of a gaseous substance. If we think about the diatomic chlorine molecule, so Cl₂, down here is a little picture of Cl₂. Each of the green spheres is a chlorine…
3d curl intuition, part 2
So where we left off, we had this two-dimensional vector field V, and I have it pictured here as kind of a yellow vector field. I just stuck it in three dimensions in kind of an awkward way where I put it on the XY plane and said, “Pretend this is in thre…