yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding specific antiderivatives: exponential function | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We're told that F of 7 is equal to 40 + 5 e 7th power, and f prime of X is equal to 5 e to the X. What is F of 0?

So, to evaluate F of 0, let's take the anti-derivative of f prime of X, and then we're going to have a constant of integration there. So we can use the information that they gave us up here that F of 7 is equal to this. This might look like an expression, but, well, it is an expression; but it's really just a number. There's no variables in this, and so we can use that to solve for our constant of integration. Then we will have fully known what f of X is, and we can use that to evaluate F of 0.

So let's just do it. If f prime of X is equal to 5 e to the X, then F of X is going to be equal to the anti-derivative of f prime of X. So the anti-derivative of 5 e to the X dx.

And this is the thing that I always find amazing about exponentials. Actually, let me just take a step. I'll take that 5 out of the integral so it becomes a little bit more obvious. And so the anti-derivative of e to the X, well, that's just e to the X because the derivative of e to the X is e to the X, which I find amazing every time I have to manipulate or take the derivative or anti-derivative of e to the X.

So this is going to be 5 e to the X + C, and you can verify: take the derivative of 5 e to the X + C. The derivative of 5 e to the X, well, that's 5 e to the X, so that works out, and the derivative—well, and the derivative of C is zero, so you wouldn't see it over here.

So now let's use this information to figure out what C is so that we know exactly what f of X is, and then we can evaluate F of 0. So we know that F of 7, so when X is equal to 7, we're going to—that this expression is going to evaluate to this thing: 40 + 5 e to the 7th power.

So, 5 * e to the 7th power plus C is equal to 40, is equal to 40 + 5 e to the 7th power. And all I did is said, okay, F of 7—well, if this is f of X, let me write this down—if this is F of seven, if this is f of X, I just replace the X with a seven to find F of seven.

We know that F of seven is also going to be equal to that; they gave us that information. But when you just look at this, it's pretty easy to figure out what C is going to be. You can subtract 5 e to the 7th from both sides, and you see that C is equal to 40.

And so we can rewrite F of X. We can say that F of X is equal to 5 e to the X plus C, which is 40. And so now from that, we can evaluate F of 0. F of 0 is going to be 5 * e to the 0 power + 40.

e to the 0 is 1, so it's going to be 5 * 1, which is just 5 + 40, which is equal to 45. And we're done.

More Articles

View All
How To Find A Life Game Worth Playing
Hello Aluxer, welcome back. Now, what if we told you that what you see around you and what you’re doing right now is not actually real? And no, okay, this isn’t a VCR video, but more of an interesting way to see life, a way that, well, it might just help …
Visiting Jacob & Co. With Teddy Baldassarre - Hands-On With The World’s Most Expensive Watches
[Music] All right, everybody, here we are in a most remarkable place. We’re at the headquarters in New York City of Jacob and Co. Now we’ve got Mr. Jacob himself here. This guy’s a legend in the watch business. Why? Because he did a transition, a morph, i…
Intermediate value theorem | Existence theorems | AP Calculus AB | Khan Academy
What we’re going to cover in this video is the Intermediate Value Theorem, which despite some of this mathy language, you’ll see is one of the more intuitive theorems, possibly the most intuitive theorem you will come across in a lot of your mathematical …
Work and power | Physics | Khan Academy
Earlier, roller coasters used to start from a height with a lot of gravitational potential energy, which then got converted into kinetic energy as the coaster went down. But what you’re seeing here is an example of something called a launched roller coast…
WE ATE GOAT BRAINS - Smarter Every Day 20
(African music) (Destin) Okay, Smarter Every Day. Pringles can will make the absolute perfect spaghetti holder when you’re done with the Pringles. There you go. Reuse. Recycle, reduce, reuse, in Africa. Right? Hey, Bob Marley-pants, are you making spa…
The Challenges with Cancer Trials | Breakthrough
ANDRE CHOULIKA: We didn’t have any intention of injecting these type of vials to patient because we needed a lot of vials to be able to file our clinical trial application. And this was planned to be done with the University College London. NARRATOR: Bef…