yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding specific antiderivatives: exponential function | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We're told that F of 7 is equal to 40 + 5 e 7th power, and f prime of X is equal to 5 e to the X. What is F of 0?

So, to evaluate F of 0, let's take the anti-derivative of f prime of X, and then we're going to have a constant of integration there. So we can use the information that they gave us up here that F of 7 is equal to this. This might look like an expression, but, well, it is an expression; but it's really just a number. There's no variables in this, and so we can use that to solve for our constant of integration. Then we will have fully known what f of X is, and we can use that to evaluate F of 0.

So let's just do it. If f prime of X is equal to 5 e to the X, then F of X is going to be equal to the anti-derivative of f prime of X. So the anti-derivative of 5 e to the X dx.

And this is the thing that I always find amazing about exponentials. Actually, let me just take a step. I'll take that 5 out of the integral so it becomes a little bit more obvious. And so the anti-derivative of e to the X, well, that's just e to the X because the derivative of e to the X is e to the X, which I find amazing every time I have to manipulate or take the derivative or anti-derivative of e to the X.

So this is going to be 5 e to the X + C, and you can verify: take the derivative of 5 e to the X + C. The derivative of 5 e to the X, well, that's 5 e to the X, so that works out, and the derivative—well, and the derivative of C is zero, so you wouldn't see it over here.

So now let's use this information to figure out what C is so that we know exactly what f of X is, and then we can evaluate F of 0. So we know that F of 7, so when X is equal to 7, we're going to—that this expression is going to evaluate to this thing: 40 + 5 e to the 7th power.

So, 5 * e to the 7th power plus C is equal to 40, is equal to 40 + 5 e to the 7th power. And all I did is said, okay, F of 7—well, if this is f of X, let me write this down—if this is F of seven, if this is f of X, I just replace the X with a seven to find F of seven.

We know that F of seven is also going to be equal to that; they gave us that information. But when you just look at this, it's pretty easy to figure out what C is going to be. You can subtract 5 e to the 7th from both sides, and you see that C is equal to 40.

And so we can rewrite F of X. We can say that F of X is equal to 5 e to the X plus C, which is 40. And so now from that, we can evaluate F of 0. F of 0 is going to be 5 * e to the 0 power + 40.

e to the 0 is 1, so it's going to be 5 * 1, which is just 5 + 40, which is equal to 45. And we're done.

More Articles

View All
YOU LIVE IN THE PAST
Hey, Vsauce, Michael here, and today we are going to be talking about the past. But not like history—in fact—we will be talking about what we call now. This very newest moment in time, and the fact that we can never really be aware of or live in what we c…
Monarch Migration and Metamorphosis | Incredible Animal Journeys | National Geographic
In Texas, the monarch is close to exhaustion. With her last reserves, she’s seeking out the perfect spot to lay her eggs. Using her amazing sense of smell, she’s on the hunt for milkweed, the only food her babies will eat. It’s a plant which was once abun…
Analyzing functions for discontinuities (continuous example) | AP Calculus AB | Khan Academy
So we have ( g(x) ) being defined as the log of ( 3x ) when ( 0 < x < 3 ) and ( 4 - x ) times the log of ( 9 ) when ( x \geq 3 ). So based on this definition of ( g(x) ), we want to find the limit of ( g(x) ) as ( x ) approaches ( 3 ). Once again, …
Dua Lipa: 'Radical Optimism', Songwriting & Headlining Glastonbury | Apple Music
Finally, I’m at a place in my career where I feel really confident. It took me so long to get to this place. “Is that the book?” That’s the book! The very first page, it says “radical optimism.” “You kidding? That’s the first thing you wrote?” Yeah, l…
The Joys of Not Needing People
Once, a lake dried up in the ancient kingdom of Chu because of the prolonged drought. The fish in the pond experienced significant hardship as they struggled to survive, flopping around in the remaining mud puddles. Zhuangzi observed how the fishes smeare…
To, two, and too | Frequently confused words | Usage | Grammar
Hello grammarians! Today we’re going to talk about the confusion that happens between these three homophones: these three words that sound exactly the same. The preposition “to,” the number “two,” and the adverb “too.” Now, these words all sound very sim…