yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How do oysters make pearls? - Rob Ulrich


3m read
·Nov 8, 2024

While most people wouldn’t consider the crusty exterior of an oyster to be particularly beautiful, opening up this craggy case might reveal an exquisite jewel nestled within. Yet, despite their iridescent colors and smooth shapes, pearls are actually made of the exact same material as the shell that surrounds them. Pearls, urchin spines, the shells of mussels, snails and clams, even coral—all these structures are made out of the same chemical compound: calcium carbonate.

So, how does this single ingredient form such a vast array of materials? Calcium carbonate, or CaCO3, is common on land, and even more bountiful in the sea. The Earth’s crust is rich in calcium, and over millennia these deposits have seeped into rivers and oceans. This is especially true near hydrothermal vents, where hot seawater mingles with calcium rich basalts. Meanwhile, when carbon dioxide in the air interacts with seawater it eventually produces dissolved carbonate.

Every year, the ocean absorbs roughly one third of our carbon dioxide emissions, adding huge quantities of carbonate into the water. It’s no surprise that sea creatures have made use of these abundant compounds, but the way calcium and carbonate are woven together into various shapes is surprisingly artful. Let’s return to the humble oyster. Like many aquatic mollusks, oysters start life as exposed larvae, and quickly get to work building a protective shell. First, an organ called the mantle secretes an organic matrix of proteins and other molecules to construct a scaffold.

Then, the oyster filters the seawater, drawing out calcium and carbonate to combine them into its building material. It lays this material over the scaffold, which is covered in charged proteins that attract and guide the calcium carbonate molecules into layers. The specific arrangement of these protein scaffolds depends on the mollusk species and their environment, accounting for their vast diversity of shell shapes, sizes, and colors.

Mollusks carefully control all components of their calcium carbonate creations—even manipulating CaCO3 at the molecular level. Using special proteins, mollusks can produce two crystal structures out of CaCO3: calcite and aragonite. Both of these compounds have the same chemical composition, but different qualities due to the way their crystal lattices are arranged. Calcite is the more stable of the two and less prone to dissolving over time, so most mollusk shells have a sturdy outer layer of calcite.

As the slightly more soluble molecule, aragonite can better adapt to more or less acidic environments. So most mollusk shells have an interior layer of aragonite to maintain their internal pH level. But one form of aragonite is stronger and more versatile than the rest: nacre. Mollusks make this special material by placing successive layers of aragonite interspersed with proteins. These layers are stacked like hexagonal bricks, each surrounded by other organic material that directs their orientation.

The uniform layering and brick-like structure of nacre is key to its signature iridescence. The layers are similar in thickness to the wavelength of visible light, so the light reflecting from its interior surface interferes with the light reflecting from the outer surface. When particles of light strike the nacre, they bounce around its multilayered crystalline structure in a cascade of shifting rainbows.

But nacre isn’t just pretty—it’s one of the strongest and lightest biomaterials we know of. And it's not just oysters that produce it. In fact, numerous mollusk species deploy nacre as one of their primary defense mechanisms. If an intruding parasite or even a stray particle of sand irritates the mantle, the mollusk will coat the offender in nacre-producing cells to form what’s known as a pearl sac.

These cells wrap the threat in layers of proteins and aragonite until eventually the cocoon completely absorbs the invader—dissolving the threat into an opalescent sphere of nacre. This defense mechanism is our leading theory for mollusks making pearls; transforming everyday intruders into timeless treasures.

More Articles

View All
How the last two centuries led to today’s economy | Adam Davidson | Big Think
I had this thought as I wrote the book that the best of the 21st century combines the best of the 19th and the best of the 20th. And then my joke is the worst combines the worst of those two centuries as well. What I mean by that is, if you look at the 19…
View Source Code Of Any Web Site
Mack heads on A1 here today. This is a little video on how to view the source code of any website. Now, you probably already know how to do this, but a bunch of people don’t know how. So, uh, first of all, there are two ways that I’m gonna show you how to…
String Theory Explained – What is The True Nature of Reality?
What is the true nature of the universe? To answer this question, humans come up with stories to describe the world. We test our stories and learn what to keep and what to throw away. But the more we learn, the more complicated and weird our stories becom…
Tiger Sharks' Superpowered Jaws | SharkFest | National Geographic
Tiger sharks are one of the largest predatory sharks on the planet. They feed off an extensive menu: whales, birds, even other sharks. But there’s one delicacy that takes more effort than others. Turtles! So how much jaw power does it take to crunch throu…
Canadian Constitutional Crisis | Brian Peckford | EP 221
Mr. Peckford and I have been talking over the last week, as I mentioned, because he has serious concerns about the policies of the current Canadian government in relation to the Canadian Charter of Rights, which was established as part of the Constitution…
High Speed Video of Pistols Underwater - Smarter Every Day 19
Hey, it’s me Destin. Welcome to this week in Smarter Every Day. Today, we’re gonna try to figure something out that I’ve always wondered. What happens when you shoot a pistol underwater? I think revolvers are gonna act a little different than semi-automat…