yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The beauty of collective intelligence, explained by a developmental biologist | Michael Levin


3m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.
  • People tend to think of intelligence as being of two kinds: There's the quote, unquote "real" intelligence, which is what we are supposed to have, and then there's this idea of a 'collective intelligence,' so swarms of bees, colonies of ants, shoals of fish, and so on.

And people tend to think of those as radically different things. But the reality is all intelligence is collective intelligence, and this is because we are all made of parts. So you and I are collections of cells, and these cells, including neurons and various other cells in our body, have many competencies—this is because they were once separate individuals by themselves. They were unicellular organisms with all of the skills needed to survive in a complex world.

And that journey that we all took, those progressive steps by which we construct ourselves—we construct our bodies, we construct our minds—that journey is maybe the most profound question in all of science.

I'm Michael Levin, and I'm a developmental biologist at Tufts University. Developmental biology is maybe the most magical of all the sciences because you get to see with your own eyes that journey that we all take from physics to mind.

We all start out life as an unfertilized oocyte, and then slowly, gradually, step-by-step, that oocyte turns into a bunch of cells that self-construct an embryo, and eventually that embryo matures and becomes a large-scale adult. In the case of a human, it will be an individual with metacognitive capacities and the ability to reason.

But we all have our origin in that chemistry and physics of that initial oocyte. And the magic of developmental biology is that there is a mechanism by which all of these cells get together, and they are able to cooperate towards large-scale goals.

This is the notion that biology uses what I call a "Multi-scale competency architecture," which basically means that we are not simply nested structurally in terms of cells which comprise tissues, comprising organs, and bodies, and then ultimately societies and so on—that's obviously true on a structural level.

But more interesting is the fact that each of these layers has certain problem-solving competencies. Each one solves problems in their own space, so cells are simultaneously solving problems in physiological spaces and metabolic spaces and gene expression spaces, and tissues and organs are solving those problems.

But, for example, during embryogenesis or regeneration, they're also solving problems in anatomical space. They're trying to navigate a path from the shape of an early embryo or a fertilized zygote all the way up to the complexity of a human body with all of the different types of organs and structures.

So the competency architecture refers to the fact that all of the parts inside of us and inside of all other creatures are themselves competent agents with preferences, with goals, with various abilities to pursue those goals, and other types of problem-solving capacities.

What evolution has given us is this remarkable architecture where every level shapes the behavioral landscape of the levels below—and the levels below do clever and interesting things that allow the levels above not to have to micromanage, and to be able to control in an interesting top-down capacity.

One of the most important things about this emerging field of diverse intelligence is that we, as humans, have very limited capacity and finely-honed ability to see intelligence in medium-sized objects moving at medium speeds through three-dimensional space.

So we see other primates and we see crows and we see dolphins, and we have some ability to recognize intelligence. But we really are very bad at recognizing intelligence in unconventional embodiments where our basic expectations strain against this idea that there could be intelligence in something extremely small or extremely large.

People often criticize this approach by saying, "Well, then anything goes. If you can pick up a rock and say, 'I think this rock is cognitive and intelligent, you know, there's a spirit with hopes and dreams inside of..."

More Articles

View All
Matrix Theory: Relativity Without Relative Space or Time
[Music] Let us consider a classic relativity scenario. Your friend gets on a rocket ship and blasts off towards Mars at nearly the speed of light. During this journey, his clocks tick slower, his lengths contract, and when he arrives at his destination, h…
Cory Doctorow and Joe Betts-Lacroix on Adversarial Interoperability
Alright guys, welcome to the podcast. Excellent, thank you. So today we have Cory Doctorow and Joe Betts-Lacroix. Joe, could you start it off? Sure, so Cory, when I saw your talk at Burning Man, it was last time and I heard you mentioned adversarial inte…
What Is Light?
Light is the connection between us and the universe. Through light, we could experience distant stars and look back at the beginning of existence itself. But, what is light? In a nutshell, light is the smallest quantity of energy that can be transported: …
5 Investing Mistakes To Avoid In Your 20’s
What’s up you guys, it’s Graham here. So chances are if you’ve clicked on this video, you’ve clicked on it to make sure you’re not making any of these investing mistakes, which unfortunately I have some bad news for you. Like, no, for real, I actually do …
The Three Forms of Leverage
There are three broad classes of Leverage. One form of Leverage is going to be labor, which is the oldest form of Leverage—other humans working for you. That’s actually not a great one in the modern world. It used to be great in the old world, but in the …
Example plotting corners of rectangle
The four corners of a rectangle are located at the points (11, 7), (11, 0), (2, 0), and (2, 7). Plot the four corners of the rectangle on the coordinate plane below, and they have these dots, and we can actually move these around for the four corners of o…