yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Real gases: Deviations from ideal behavior | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

We've already spent some time looking at the ideal gas law and also thinking about scenarios where things might diverge from what at least the ideal gas law might predict. What we're going to do in this video is dig a little bit deeper into scenarios where we might diverge a little bit from the ideal gas law or maybe, I guess, a lot a bit in certain situations.

So, I have three scenarios here. This first scenario right over here, I have a high temperature. High temperature, and I have a large volume. Both of these are really important because when we think about when we get close to being ideal, that's situations where the volume of the particles themselves are negligible to the volume of the container. At least here, it looks like that might be the case because we're dealing with a very large volume. Even this isn't drawn to scale; I just drew the particles this size so that you could see them.

High temperature helps us realize that, well, maybe the intermolecular interactions or attractions between the particles aren't going to be that significant. So, in a high temperature, large volume scenario, this might be pretty close to ideal. Now, it's not going to be perfectly ideal because real gases have some volume and they do have some intermolecular interactions.

But now, let's change things up a little bit. Let's now move to the same volume, so we're still dealing with a large volume, but let's lower the temperature. It's a low temperature, and we can see because temperature is proportional to average kinetic energy of the particles that here these arrows on average are a little bit smaller. Let's say we lower the temperature close to the condensation point. Remember the condensation point of a gas? That's a situation where the molecules are attracting each other and even starting to clump up together.

They're starting to, if we're thinking about say, water vapors, they're starting to get into little droplets of liquid water because they're getting so attracted to each other. So, in this situation where we have just lowered the temperature, the ideal gas law would already predict that if you keep everything else constant, that the pressure would go down.

If we solve for pressure, we would have P is equal to nRT over V. So, if you just lower temperature, the ideal gas law would already predict that your pressure would be lower. But in this situation with a real gas, because we're close to that condensation point, these gases, these particles are more and more attracted to each other. So, they're less likely to bump into the sides of the container, or if they do, they're going to do it with less vigor.

So, in this situation for a real gas, because of the intermolecular traction between the particles, you would actually have a lower pressure than even the ideal gas law would predict. The ideal gas law would already predict that if you lower the temperature, pressure would go down, but you would see that a real gas in this scenario P is even lower, even lower for a real gas.

Now, let's go to another scenario. Let's go to a scenario where we keep the high temperature that we had in the original scenario, but now we have a small volume. Small volume. Maybe this top of the container is a piston, and we push it down like this. Well, the ideal gas law, if we just solve for P again, P is equal to nRT over V. It would already predict that if you decrease the denominator here, that's going to increase the value of the entire expression. So, it would already predict that you would have a higher pressure.

That the particles will bounce into the sides of the container more frequently and with more vigor. But if we have a really small volume of the container, we no longer can assume that the volume of the particles themselves are going to be negligible compared to the volume of the container.

The effective volume to move around in is even lower than we're seeing in this equation. So, these particles have even less space to bounce around in because they take up some of the space. So they're going to bounce off the sides of the container more frequently and even with more vigor. So here, pressure is even higher for a real gas than what is predicted by the ideal gas law.

More Articles

View All
Sampling distribution of the difference in sample means | AP Statistics | Khan Academy
What we’re going to do in this video is explore the sampling distribution for a difference in sample means, and we’ll use this example right over here. So it tells us a large bakery makes thousands of cupcakes daily in two shifts: shift A and shift B. Su…
The Small Investor's Secret Weapon
Hey guys, welcome back to the Aussie World Creation YouTube channel. My name is Brandon, and today I’m going to be talking about why small investors—this little guys, you and me—have an unbeatable advantage over the really big players in the stock market …
#shorts I Was Walking Right After Surgery
20 years ago, hip surgery was not a day in, day out. It was not. I think I was only here 3 hours and 40 minutes. Because we’ve been able to save operational money, we can convert that into equipment and technology for the hospital, and that made patients …
Was Nero the Antichrist? | The Story of God
But why might early Christians have called Nero the Antichrist? Kim brings me to the very heart of the Vatican, St. Peter’s Square, to show me the answer. So, we know that the code 666 refers to the emperor Nero. Why? Emperor Nero was despised for many t…
Underwater Explosions (Science with Alan Sailer!) - Smarter Every Day 63
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So today, I’m in California, and I have the great privilege of introducing the man, Alan Sailer. Hello, Alan! Sailer is, if you don’t know, one of the best high-speed photographers that currently do…
Adding and subtracting fractions with negatives | 7th grade | Khan Academy
Let’s say we wanted to figure out what (3 \frac{7}{3}) minus (-\frac{7}{3}) minus (\frac{11}{3}) is. Pause this video and see if you can have a go at it before we do it together. All right, now let’s work on this together. You might be tempted to deal wi…