yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equations | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some practice finding general solutions to separable differential equations.

So, let's say that I had the differential equation Dy/Dx, the derivative of y with respect to X, is equal to e^X over y. See if you can find the general solution to this differential equation. I'm giving you a huge hint: it is a separable differential equation.

All right, so when we're dealing with a separable differential equation, what we want to do is get the Y's and the Dy on one side and then the x's and the DXs on the other side. We really treat these differentials kind of like variables, which is a little handwavy with the mathematics, but that's what we will do.

So, let's see. If we multiply both sides by y, we're going to get y * derivative of y with respect to X is equal to e^X. Now, we can multiply both sides by the differential DX. If we multiply both of them by DX, those cancel out and we are left with y * Dy is equal to e^X DX.

Now we can take the integral of both sides, so let us do that. What is the integral of y Dy? Well, here we would just use the reverse power rule. We would increment the exponent, so it's y to the 1, but now when we take the anti-derivative, it will be y^2. Then we divide by that incremented exponent is equal to...

Well, the exciting thing about e^X is its anti-derivative is, and its derivative is e^X. So, we can say it is equal to e^X + C. We can leave it like this if we like; in fact, this right over here, this isn't an explicit function.

Y here isn't an explicit function of X. You could actually say Y is equal to the plus or minus square root of (2 * all of this business), but this would be a pretty general relationship which would satisfy this separable differential equation.

Let's do another example. So, let's say that we have the derivative of y with respect to X is equal to, let's say, it's equal to y^2 * sin(X). Pause the video and see if you can find the general solution here.

So, once again, we want to separate our y's and our x's. Let's see, we can multiply both sides by y to the -2 power. These become one, and then we could also multiply both sides by DX. So, if we multiply DX here, those cancel out and then we multiply DX here.

Now, we're left with y to the -2 power * Dy is equal to sin(X) DX. Now we just can integrate both sides. What is the anti-derivative of y to the -2? Well, once again, we use the reverse power rule.

We increment the exponent, so it's going to be y to the 1, and then we divide by that newly incremented exponent. Dividing by negative 1 would just make this thing negative, so that is going to be equal to...

So, what's the anti-derivative of sin(X)? Well, you might recognize it. If I put a negative there and a negative there, the anti-derivative of negative sin(X) well that's cosine of X. So, this whole thing is going to be negative cosine of X.

Another way to write this: I can multiply both sides by -1, and so these would both become positive. I could write 1/Y is equal to cosine of X.

Actually, let me write it this way: plus C. Don't want to forget the plus C's, plus C. Or, I can take the reciprocal of both sides. If I want to solve explicitly for y, I could get Y is equal to 1 over (sin(X) + C) as our general solution, and we're done.

That was strangely fun!

More Articles

View All
What Blue Holes Have to Say About Climate Change | Years of Living Dangerously
We’re getting everything ready aboard this ship, here the, uh, Alucha research vessel. What we’ve got on board Alusia is we’ve got two subs; both subs are TH000 M rated. We probably, on board the ship, do the most thousand M diving in the world at this mo…
Amazing Honey Coiling High Speed Video! - Smarter Every Day 53
Hey, it’s me Destin. Welcome to Smarter Every Day, and today we’re going to show you some pretty cool high speed, and it has nothing to do with all those assault rifles. It’s actually much sweeter than that, literally. Check this out. It is a jar of honey…
Destination Delicious: Experiencing Austin with an Appetite for Adventure | National Geographic
Foreign photography leads you to magic places that you wouldn’t go without the camera. [Music] Curiosity is sort of like the fundamental thing that, as a documentary photographer, you have to have. That’s why I became a photographer. I work a lot in the A…
Armies of the Future | StarTalk
[Music] Rise of the robots. I. This is a story that’s never ending, heavily treated in science fiction platforms. Uh, for all, for in all frontiers: servant robots, military robots, sex robots. And maybe that’s inevitable, given the direction technolog…
Watch: An Incredible Viking Voyage—Made Entirely of Paper | National Geographic
I am old, but I remember long ago when we Norsemen ruled the sea. As our northern kingdom expanded, the secret of our success lay in how we built our fearsome longships. Imagine a young boy named Harold who yearns to see the world. His father is a shipbu…
Charlie Munger is selling Alibaba!
If you’ve been following this channel for any amount of time, you know I’m a big believer that one of the best ways to learn about investing is to follow the portfolios of well-respected investors. Whether you are just starting out on your investing journ…