yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equations | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some practice finding general solutions to separable differential equations.

So, let's say that I had the differential equation Dy/Dx, the derivative of y with respect to X, is equal to e^X over y. See if you can find the general solution to this differential equation. I'm giving you a huge hint: it is a separable differential equation.

All right, so when we're dealing with a separable differential equation, what we want to do is get the Y's and the Dy on one side and then the x's and the DXs on the other side. We really treat these differentials kind of like variables, which is a little handwavy with the mathematics, but that's what we will do.

So, let's see. If we multiply both sides by y, we're going to get y * derivative of y with respect to X is equal to e^X. Now, we can multiply both sides by the differential DX. If we multiply both of them by DX, those cancel out and we are left with y * Dy is equal to e^X DX.

Now we can take the integral of both sides, so let us do that. What is the integral of y Dy? Well, here we would just use the reverse power rule. We would increment the exponent, so it's y to the 1, but now when we take the anti-derivative, it will be y^2. Then we divide by that incremented exponent is equal to...

Well, the exciting thing about e^X is its anti-derivative is, and its derivative is e^X. So, we can say it is equal to e^X + C. We can leave it like this if we like; in fact, this right over here, this isn't an explicit function.

Y here isn't an explicit function of X. You could actually say Y is equal to the plus or minus square root of (2 * all of this business), but this would be a pretty general relationship which would satisfy this separable differential equation.

Let's do another example. So, let's say that we have the derivative of y with respect to X is equal to, let's say, it's equal to y^2 * sin(X). Pause the video and see if you can find the general solution here.

So, once again, we want to separate our y's and our x's. Let's see, we can multiply both sides by y to the -2 power. These become one, and then we could also multiply both sides by DX. So, if we multiply DX here, those cancel out and then we multiply DX here.

Now, we're left with y to the -2 power * Dy is equal to sin(X) DX. Now we just can integrate both sides. What is the anti-derivative of y to the -2? Well, once again, we use the reverse power rule.

We increment the exponent, so it's going to be y to the 1, and then we divide by that newly incremented exponent. Dividing by negative 1 would just make this thing negative, so that is going to be equal to...

So, what's the anti-derivative of sin(X)? Well, you might recognize it. If I put a negative there and a negative there, the anti-derivative of negative sin(X) well that's cosine of X. So, this whole thing is going to be negative cosine of X.

Another way to write this: I can multiply both sides by -1, and so these would both become positive. I could write 1/Y is equal to cosine of X.

Actually, let me write it this way: plus C. Don't want to forget the plus C's, plus C. Or, I can take the reciprocal of both sides. If I want to solve explicitly for y, I could get Y is equal to 1 over (sin(X) + C) as our general solution, and we're done.

That was strangely fun!

More Articles

View All
How to Get and Test Startup Ideas - Michael Seibel
There’s a common misconception that your idea has to be great in order to start a company, and the first thing I want to do is destroy that misconception. Personally, I was one of the cofounders of a company called Justin.tv. It later became a company cal…
The Stock Market Just Peaked
What’s up, Graham? It’s guys here. So, between record high inflation, imminent rate hikes, and outsized earnings, there’s no denying that there’s a lot of uncertainty and opposing viewpoints in the market right now. On the one side, we have some of the m…
Watch National Geographic Staff Answer Nearly Impossible Geography Questions | National Geographic
From the National Geographic headquarters in Washington, DC, welcome to the 29th National Geographic Bee. What are we doing here? The 4th grade! I was a participant of the GOP, so I might be pretty good at it. So let’s go! Friday, more than 40 species o…
Optimistic Nihilism: Nothing matters, but it’s ok
Life is but a walking shadow, a poor player that struts and frets his hour upon the stage and then is heard no more. It’s a tale told by an idiot, full of sound and fury, signifying nothing. Have you ever met someone who calls himself a nihilist? Maybe y…
7 Best Questions Asked at Berkshire Hathaway Annual Meeting
Why are you recommending listeners to buy now yet you’re not comfortable buying now as evidenced by your huge cash position? Well hey, as I just explained, the position isn’t that huge. When I look at worst-case possibilities, I would say that there are …
These Ants Use Their Babies As Glue Guns
Deep in tropical jungles lie floating kingdoms, ruled by beautiful and deadly masters. They’re sort of the high elves of the ant kingdoms; talented architects that create castles and city-states. But they are also fierce and expansionist warriors, and the…