yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equations | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some practice finding general solutions to separable differential equations.

So, let's say that I had the differential equation Dy/Dx, the derivative of y with respect to X, is equal to e^X over y. See if you can find the general solution to this differential equation. I'm giving you a huge hint: it is a separable differential equation.

All right, so when we're dealing with a separable differential equation, what we want to do is get the Y's and the Dy on one side and then the x's and the DXs on the other side. We really treat these differentials kind of like variables, which is a little handwavy with the mathematics, but that's what we will do.

So, let's see. If we multiply both sides by y, we're going to get y * derivative of y with respect to X is equal to e^X. Now, we can multiply both sides by the differential DX. If we multiply both of them by DX, those cancel out and we are left with y * Dy is equal to e^X DX.

Now we can take the integral of both sides, so let us do that. What is the integral of y Dy? Well, here we would just use the reverse power rule. We would increment the exponent, so it's y to the 1, but now when we take the anti-derivative, it will be y^2. Then we divide by that incremented exponent is equal to...

Well, the exciting thing about e^X is its anti-derivative is, and its derivative is e^X. So, we can say it is equal to e^X + C. We can leave it like this if we like; in fact, this right over here, this isn't an explicit function.

Y here isn't an explicit function of X. You could actually say Y is equal to the plus or minus square root of (2 * all of this business), but this would be a pretty general relationship which would satisfy this separable differential equation.

Let's do another example. So, let's say that we have the derivative of y with respect to X is equal to, let's say, it's equal to y^2 * sin(X). Pause the video and see if you can find the general solution here.

So, once again, we want to separate our y's and our x's. Let's see, we can multiply both sides by y to the -2 power. These become one, and then we could also multiply both sides by DX. So, if we multiply DX here, those cancel out and then we multiply DX here.

Now, we're left with y to the -2 power * Dy is equal to sin(X) DX. Now we just can integrate both sides. What is the anti-derivative of y to the -2? Well, once again, we use the reverse power rule.

We increment the exponent, so it's going to be y to the 1, and then we divide by that newly incremented exponent. Dividing by negative 1 would just make this thing negative, so that is going to be equal to...

So, what's the anti-derivative of sin(X)? Well, you might recognize it. If I put a negative there and a negative there, the anti-derivative of negative sin(X) well that's cosine of X. So, this whole thing is going to be negative cosine of X.

Another way to write this: I can multiply both sides by -1, and so these would both become positive. I could write 1/Y is equal to cosine of X.

Actually, let me write it this way: plus C. Don't want to forget the plus C's, plus C. Or, I can take the reciprocal of both sides. If I want to solve explicitly for y, I could get Y is equal to 1 over (sin(X) + C) as our general solution, and we're done.

That was strangely fun!

More Articles

View All
A Day at the Oyster Farm | Restaurants at the End of the World | National Geographic
Is that Captain Adam? Captain Adam, yes. It’s Captain Adam, holy [bleep]. The one and only. How’s it going? The entire island has only 400 residents, so I guess I shouldn’t be surprised when the guy I hitched a ride with to get to the island also runs a l…
The BIGGEST Stimulus Check JUST RELEASED
What’s up you guys? It’s Graham here! So lately, I’ve had quite a few people bring this to my attention, so much so that I felt I should make a video about it explaining exactly what’s going on in the entire situation. Because when you see a title like th…
Michael Burry's $1.6B Bet On A Stock Market Crash?
Michael Barry just revealed what mainstream media is calling a massive bet against the stock market, but in reality, there’s a bit more to it than that. Barry, who has been radio silenced and is deleting his Twitter account, earlier this year has just rel…
Long run and short run Phillips curves
Let’s talk a little bit about the short run and long run Phillips curve. Now, they’re named after the economist Bill Phillips, who saw in the 1950s what looked like an inverse relationship between inflation and the unemployment rate. He was studying decad…
PANTIES For Trees! -- IMG! 17
A cat with the cabbage hat and a hamburger bed. It’s episode 17 of IMG. The only thing better than jumping is jumping over babies. And here’s the secret to sleeping with the princess: too girly for you? Then you probably shouldn’t buy these. If you’re si…
The Cult of Conformity in Silicon Valley
Who would want to be an early employee at imeem and Justin TV? Non-conformists, like, they would never be. You know a conformist would not be caught dead working at an early stage. This is Michael Seibel with Dalton Caldwell. Today, we’re talking about co…