yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equations | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some practice finding general solutions to separable differential equations.

So, let's say that I had the differential equation Dy/Dx, the derivative of y with respect to X, is equal to e^X over y. See if you can find the general solution to this differential equation. I'm giving you a huge hint: it is a separable differential equation.

All right, so when we're dealing with a separable differential equation, what we want to do is get the Y's and the Dy on one side and then the x's and the DXs on the other side. We really treat these differentials kind of like variables, which is a little handwavy with the mathematics, but that's what we will do.

So, let's see. If we multiply both sides by y, we're going to get y * derivative of y with respect to X is equal to e^X. Now, we can multiply both sides by the differential DX. If we multiply both of them by DX, those cancel out and we are left with y * Dy is equal to e^X DX.

Now we can take the integral of both sides, so let us do that. What is the integral of y Dy? Well, here we would just use the reverse power rule. We would increment the exponent, so it's y to the 1, but now when we take the anti-derivative, it will be y^2. Then we divide by that incremented exponent is equal to...

Well, the exciting thing about e^X is its anti-derivative is, and its derivative is e^X. So, we can say it is equal to e^X + C. We can leave it like this if we like; in fact, this right over here, this isn't an explicit function.

Y here isn't an explicit function of X. You could actually say Y is equal to the plus or minus square root of (2 * all of this business), but this would be a pretty general relationship which would satisfy this separable differential equation.

Let's do another example. So, let's say that we have the derivative of y with respect to X is equal to, let's say, it's equal to y^2 * sin(X). Pause the video and see if you can find the general solution here.

So, once again, we want to separate our y's and our x's. Let's see, we can multiply both sides by y to the -2 power. These become one, and then we could also multiply both sides by DX. So, if we multiply DX here, those cancel out and then we multiply DX here.

Now, we're left with y to the -2 power * Dy is equal to sin(X) DX. Now we just can integrate both sides. What is the anti-derivative of y to the -2? Well, once again, we use the reverse power rule.

We increment the exponent, so it's going to be y to the 1, and then we divide by that newly incremented exponent. Dividing by negative 1 would just make this thing negative, so that is going to be equal to...

So, what's the anti-derivative of sin(X)? Well, you might recognize it. If I put a negative there and a negative there, the anti-derivative of negative sin(X) well that's cosine of X. So, this whole thing is going to be negative cosine of X.

Another way to write this: I can multiply both sides by -1, and so these would both become positive. I could write 1/Y is equal to cosine of X.

Actually, let me write it this way: plus C. Don't want to forget the plus C's, plus C. Or, I can take the reciprocal of both sides. If I want to solve explicitly for y, I could get Y is equal to 1 over (sin(X) + C) as our general solution, and we're done.

That was strangely fun!

More Articles

View All
Converting a complex number from polar to rectangular form | Precalculus | Khan Academy
We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the ne…
YC SUS: Gustaf Alströmer and Eric Migicovsky discuss growth tactics
Exciting! Welcome to another week of Startup School. I’m joined this week by Gustav. You want to tell us a little bit about yourself? Maybe your background? Sure! So I work here at YC as a partner. I’ve been here for two and a half years. Before that, I …
Introduction to inference about slope in linear regression | AP Statistics | Khan Academy
In this video, we’re going to talk about regression lines. But it’s not going to be the first time we’re talking about regression lines. And so, if the idea of a regression is foreign to you, I encourage you to watch the introductory videos on it. Here, w…
Terminal prepositions | The parts of speech | Grammar | Khan Academy
Hello, Garans. Today I want to talk about ending sentences with prepositions, and I want to tell you straight up—it is totally okay. Like, it is perfectly grammatically correct and sensible and fine to end sentences with prepositions in English. And if yo…
COLD HARD SCIENCE: SLAPSHOT Physics in Slow Motion - Smarter Every Day 112
Hey, it’s me Destin, welcome back to Smarter Every Day. So it might surprise you to know that we have hockey at the university that I went to. Anyway, today we’re gonna talk about the physics of a slap shot. You’re getting Smarter Every Day. [theme music]…
How Does A Carburetor Work? | Transparent Carburetor at 28,546 fps Slow Mo - Smarter Every Day 259
This is a carburetor, and this is a special 3D printed see-through carburetor. And this is a high-speed camera with a macro lens on it. You see where this is going. If you’ve ever cranked some type of lawn care product with a small engine on it, you have …