yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equations | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some practice finding general solutions to separable differential equations.

So, let's say that I had the differential equation Dy/Dx, the derivative of y with respect to X, is equal to e^X over y. See if you can find the general solution to this differential equation. I'm giving you a huge hint: it is a separable differential equation.

All right, so when we're dealing with a separable differential equation, what we want to do is get the Y's and the Dy on one side and then the x's and the DXs on the other side. We really treat these differentials kind of like variables, which is a little handwavy with the mathematics, but that's what we will do.

So, let's see. If we multiply both sides by y, we're going to get y * derivative of y with respect to X is equal to e^X. Now, we can multiply both sides by the differential DX. If we multiply both of them by DX, those cancel out and we are left with y * Dy is equal to e^X DX.

Now we can take the integral of both sides, so let us do that. What is the integral of y Dy? Well, here we would just use the reverse power rule. We would increment the exponent, so it's y to the 1, but now when we take the anti-derivative, it will be y^2. Then we divide by that incremented exponent is equal to...

Well, the exciting thing about e^X is its anti-derivative is, and its derivative is e^X. So, we can say it is equal to e^X + C. We can leave it like this if we like; in fact, this right over here, this isn't an explicit function.

Y here isn't an explicit function of X. You could actually say Y is equal to the plus or minus square root of (2 * all of this business), but this would be a pretty general relationship which would satisfy this separable differential equation.

Let's do another example. So, let's say that we have the derivative of y with respect to X is equal to, let's say, it's equal to y^2 * sin(X). Pause the video and see if you can find the general solution here.

So, once again, we want to separate our y's and our x's. Let's see, we can multiply both sides by y to the -2 power. These become one, and then we could also multiply both sides by DX. So, if we multiply DX here, those cancel out and then we multiply DX here.

Now, we're left with y to the -2 power * Dy is equal to sin(X) DX. Now we just can integrate both sides. What is the anti-derivative of y to the -2? Well, once again, we use the reverse power rule.

We increment the exponent, so it's going to be y to the 1, and then we divide by that newly incremented exponent. Dividing by negative 1 would just make this thing negative, so that is going to be equal to...

So, what's the anti-derivative of sin(X)? Well, you might recognize it. If I put a negative there and a negative there, the anti-derivative of negative sin(X) well that's cosine of X. So, this whole thing is going to be negative cosine of X.

Another way to write this: I can multiply both sides by -1, and so these would both become positive. I could write 1/Y is equal to cosine of X.

Actually, let me write it this way: plus C. Don't want to forget the plus C's, plus C. Or, I can take the reciprocal of both sides. If I want to solve explicitly for y, I could get Y is equal to 1 over (sin(X) + C) as our general solution, and we're done.

That was strangely fun!

More Articles

View All
15 BEST Books on INVESTING
You are watching the book club. Every Wednesday, we handpick the best books to improve your life: the 15 best books on investing. Welcome to a Luxe calm, the place where future billionaires come to get inspired. If you’re not subscribed yet, you’re missin…
15 Biggest Opportunities You'll Have in Your Life
Life is full of opportunities that can shape your journey and define your future. From the early days of education to building a family, each opportunity gives you a chance for growth, fulfillment, and success. Here are the 15 biggest opportunities you’ll…
RC step response 3 of 3 example
In the last video, we worked out the step response of an RC circuit, and now we’re going to look at a real example. So, this is our answer. This is the step response, the total response to our circuit to a step input. What does this look like? So, I’m go…
See How This Avalanche Rescue Dog Is Enjoying Her Retirement | Short Film Showcase
[Music] This guy is an Australian Shepherd. We got her at eight weeks old with the purpose in mind of turning her into a search-and-rescue dog. A search-and-rescue dog, especially an avalanche rescue dog, is a dog that’s trained to find human scent that c…
How to cure brain rot
[Music] A lot of people have been feeling as if though something sinister is happening to their brains. They feel as if though their excessive use of the internet and the types of videos they watch on there is making them dumber. And this probably isn’t n…
Introduction to "Meet a chemistry professional"
Have you ever wondered what a chemist really does? In this series, we asked people with chemistry backgrounds to share their stories. We have people from all different fields and careers. For example, we have an interview of someone who works in forensics…