yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equations | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some practice finding general solutions to separable differential equations.

So, let's say that I had the differential equation Dy/Dx, the derivative of y with respect to X, is equal to e^X over y. See if you can find the general solution to this differential equation. I'm giving you a huge hint: it is a separable differential equation.

All right, so when we're dealing with a separable differential equation, what we want to do is get the Y's and the Dy on one side and then the x's and the DXs on the other side. We really treat these differentials kind of like variables, which is a little handwavy with the mathematics, but that's what we will do.

So, let's see. If we multiply both sides by y, we're going to get y * derivative of y with respect to X is equal to e^X. Now, we can multiply both sides by the differential DX. If we multiply both of them by DX, those cancel out and we are left with y * Dy is equal to e^X DX.

Now we can take the integral of both sides, so let us do that. What is the integral of y Dy? Well, here we would just use the reverse power rule. We would increment the exponent, so it's y to the 1, but now when we take the anti-derivative, it will be y^2. Then we divide by that incremented exponent is equal to...

Well, the exciting thing about e^X is its anti-derivative is, and its derivative is e^X. So, we can say it is equal to e^X + C. We can leave it like this if we like; in fact, this right over here, this isn't an explicit function.

Y here isn't an explicit function of X. You could actually say Y is equal to the plus or minus square root of (2 * all of this business), but this would be a pretty general relationship which would satisfy this separable differential equation.

Let's do another example. So, let's say that we have the derivative of y with respect to X is equal to, let's say, it's equal to y^2 * sin(X). Pause the video and see if you can find the general solution here.

So, once again, we want to separate our y's and our x's. Let's see, we can multiply both sides by y to the -2 power. These become one, and then we could also multiply both sides by DX. So, if we multiply DX here, those cancel out and then we multiply DX here.

Now, we're left with y to the -2 power * Dy is equal to sin(X) DX. Now we just can integrate both sides. What is the anti-derivative of y to the -2? Well, once again, we use the reverse power rule.

We increment the exponent, so it's going to be y to the 1, and then we divide by that newly incremented exponent. Dividing by negative 1 would just make this thing negative, so that is going to be equal to...

So, what's the anti-derivative of sin(X)? Well, you might recognize it. If I put a negative there and a negative there, the anti-derivative of negative sin(X) well that's cosine of X. So, this whole thing is going to be negative cosine of X.

Another way to write this: I can multiply both sides by -1, and so these would both become positive. I could write 1/Y is equal to cosine of X.

Actually, let me write it this way: plus C. Don't want to forget the plus C's, plus C. Or, I can take the reciprocal of both sides. If I want to solve explicitly for y, I could get Y is equal to 1 over (sin(X) + C) as our general solution, and we're done.

That was strangely fun!

More Articles

View All
The Fifth Amendment | The National Constitution Center | US government and civics | Khan Academy
Hi, this is Kim from Khan Academy, and today I’m learning more about the Fifth Amendment to the U.S. Constitution. The Fifth Amendment is one of the better-known constitutional amendments since we frequently hear references to suspects taking the Fifth in…
Using TI calculator for P-value from t statistic | AP Statistics | Khan Academy
Miriam was testing her null hypothesis that the population mean of some dataset is equal to 18 versus her alternative hypothesis that the mean is less than 18. With a sample of 7 observations, her test statistic, I can never say that was T, is equal to ne…
How To Make the Best To-Do List For School
There’s something just so satisfying about getting things done, you know? Checking the boxes off in your to-do list, walking the dog, sending emails, doing your laundry. You know, it makes you feel good inside. It makes you feel like you’re not as lazy as…
How Sharks Devoured My Career | Podcast | Overheard at National Geographic
Foreign I gotta say the first experience I had with a great white, or I should say the lead up to the first experience, was filled with terror. That’s National Geographic Explorer, Gibbs Kaguru. Gibbs is a Kenyan scientist who studies sharks, and he’s tal…
Khanmigo is now available to the public (US only)| Personalized AI tutor & teaching assistant
Hi everyone, Sal Khan here, and I’m excited to announce that Khan Migo, our generative AI-powered tutor on Khan Academy, is now generally available! This is especially powerful as we go into back to school. If you have Khan Migo, your student has it on th…
Perimeter word problem (skating rink) | Math | 3rd grade | Khan Academy
Gus plans to install a handrail around a skating rink. The rink forms a 40 meter by 20 meter rectangle. How many meters of handrail does Gus need? So here’s what we know about this skating rink: it’s a 40 meter by 20 meter rectangle. So let’s draw the sk…