yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: separable differential equations | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some practice finding general solutions to separable differential equations.

So, let's say that I had the differential equation Dy/Dx, the derivative of y with respect to X, is equal to e^X over y. See if you can find the general solution to this differential equation. I'm giving you a huge hint: it is a separable differential equation.

All right, so when we're dealing with a separable differential equation, what we want to do is get the Y's and the Dy on one side and then the x's and the DXs on the other side. We really treat these differentials kind of like variables, which is a little handwavy with the mathematics, but that's what we will do.

So, let's see. If we multiply both sides by y, we're going to get y * derivative of y with respect to X is equal to e^X. Now, we can multiply both sides by the differential DX. If we multiply both of them by DX, those cancel out and we are left with y * Dy is equal to e^X DX.

Now we can take the integral of both sides, so let us do that. What is the integral of y Dy? Well, here we would just use the reverse power rule. We would increment the exponent, so it's y to the 1, but now when we take the anti-derivative, it will be y^2. Then we divide by that incremented exponent is equal to...

Well, the exciting thing about e^X is its anti-derivative is, and its derivative is e^X. So, we can say it is equal to e^X + C. We can leave it like this if we like; in fact, this right over here, this isn't an explicit function.

Y here isn't an explicit function of X. You could actually say Y is equal to the plus or minus square root of (2 * all of this business), but this would be a pretty general relationship which would satisfy this separable differential equation.

Let's do another example. So, let's say that we have the derivative of y with respect to X is equal to, let's say, it's equal to y^2 * sin(X). Pause the video and see if you can find the general solution here.

So, once again, we want to separate our y's and our x's. Let's see, we can multiply both sides by y to the -2 power. These become one, and then we could also multiply both sides by DX. So, if we multiply DX here, those cancel out and then we multiply DX here.

Now, we're left with y to the -2 power * Dy is equal to sin(X) DX. Now we just can integrate both sides. What is the anti-derivative of y to the -2? Well, once again, we use the reverse power rule.

We increment the exponent, so it's going to be y to the 1, and then we divide by that newly incremented exponent. Dividing by negative 1 would just make this thing negative, so that is going to be equal to...

So, what's the anti-derivative of sin(X)? Well, you might recognize it. If I put a negative there and a negative there, the anti-derivative of negative sin(X) well that's cosine of X. So, this whole thing is going to be negative cosine of X.

Another way to write this: I can multiply both sides by -1, and so these would both become positive. I could write 1/Y is equal to cosine of X.

Actually, let me write it this way: plus C. Don't want to forget the plus C's, plus C. Or, I can take the reciprocal of both sides. If I want to solve explicitly for y, I could get Y is equal to 1 over (sin(X) + C) as our general solution, and we're done.

That was strangely fun!

More Articles

View All
Financial Tips for Millennials: Part 2
The second thing is how do I save? Well, what should I put my saving in? When thinking about what you should put your saving in, realize that the least risk investment, the one you think is the least risk investment, which is cash, is the worst investmen…
overstimulation is ruining your life
Imagine being on a sinking ship, and instead of trying to save yourself, you’re scrolling through a never-ending feed of memes and gossips. That exactly reflects what’s happening in our lives; we are drowning in a sea of overstimulation and digital distra…
Message to LearnStormers from Paralympic ski racer Josh Sundquist
Learn, Stromer’s! My name is Josh Sundquist. I am a YouTuber, best-selling author, and a Paralympic ski racer. I first started ski racing when I was a teenager. I went to my first race thinking I was like the best skier of all time, and it was gonna be am…
Meet the World’s First All-Female Team Created to Combat Poaching | Short Film Showcase
The old-school conservationists laughed at us. They said, “It’s never gonna work.” I’m 25 years old and one of the Black Mambas. I’m looking at other Black Mambas and approaching the unit. They’re always very, very shy at the beginning, and then they get …
How to get YOUR idea on SHARK TANK | Ask Mr. Wonderful #19 Kevin O'Leary and Mindy Casting
[Music] The traffic was okay. All right, we’re rolling there. Okay, I’m gonna get my merch going here. You know, slow is the commercial horse, everything. Exactly. All right, what is your real second name? I call you Mindy caste. It’s just Minnie. My las…
How a New Generation Is Saving Zambia's Lions | National Geographic
There’s no sound in the wild that is as amazing as they rolled a lion in Zambia. We had so many stories about them growing up, how just hearing them roll can bring down an entire manhood. I was young; I used to be out of stories about Laila’s, how they ea…