yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Composite functions to model extraterrestrial skydiving


2m read
·Nov 10, 2024

We're told that Phlox is a skydiver on the planet Lernon. The function A of w is equal to 0.2 times w squared, which gives the area A in square meters under Flux's parachute when it has a width of w meters. That makes sense. The function V of A is equal to the square root of 900 over 980 over A, which gives Flux's maximum speed in meters per second when she skydives with an area of A square meters under her parachute.

All right, write an expression to model Flux's terminal velocity when her parachute is w meters wide. Then, they want us to evaluate the terminal velocity when her parachute is 14 meters wide. Well, let's just focus on the first part first. Pause the video and see if you can have a go at that.

All right, now let's just think about what they're asking us. They want us to model terminal velocity when her parachute is w meters wide. So really, what they want us to do is come up with a terminal velocity, let's call that V, that is a function of w, that is a function of the width of her parachute.

Well, we have a function here that gives terminal velocity as a function of the area of her parachute. But lucky for us, we have another function that gives us area as a function of width. So we could say this is going to be the same thing as V of this function right over here; I'll do another color: A of w.

So that is going to be equal to—let me keep the colors consistent—well, everywhere where I see an A in this expression, I would replace it with A of w, which is 0.2 w squared. So it's going to be equal to the square root of 980 over—instead of A, I am going to write—so instead of this, I am going to write 0.2 w squared because that is A as a function of w.

0.2 w squared. So this right over here, this is an expression that models Flux's terminal velocity V as a function of the width of her parachute. So that's what we have right over there.

And then the next part they say, what is Flux's terminal velocity when her parachute is 14 meters wide? Well, then we just have to say, okay, w is 14. Let's just evaluate this expression. So we'll get the square root of 980 over 0.2 times 14 squared.

Well, 14 squared is 196, and this would be equal to the square root of—let's see—980 divided by 196, I believe, is exactly five. So this would be five divided by 0.2, and so five divided by essentially one-fifth is the same thing as five times five.

So this would be the square root of 25, which is equal to five. And the terminal velocity, since we gave the width in meters, this is going to give us the maximum speed in meters per second: so 5 meters per second, and we're done.

More Articles

View All
AI Can Literally Lend You a Hand #kurzgesagt #shorts
AI can literally lend you a hand, but hands are complicated. If your hand were a video game character, you’d need 27 buttons to control it. Millions of possible button combinations need to be translated to a robotic hand in real time, with as little delay…
Why The Market Hasn't Crashed Yet
What’s up, Grandma’s guys? Here, so we gotta be really, really careful not to blink because if you do, whoops! There you go; you missed the latest market crash, and, uh, now we’re back at another all-time high. Better luck next time! All right, I know I’…
Engineering with Origami
Engineers are turning to origami for inspiration for all types of applications, from medical devices to space applications, and even stopping bullets. But why is it that this ancient art of paper folding is so useful for modern engineering? Origami, liter…
Magnetic forces | Forces at a distance | Middle school physics | Khan Academy
Let’s talk about magnets and magnetic forces. Magnets are these neat objects that are able to attract metals like iron. Magnets are used in all sorts of things, from holding paper on your refrigerator to computers to compasses. So, magnets can be used to …
Neil deGrasse Tyson Demystifies Breakthroughs | Breakthrough
There’s a stereotype of discoveries and breakthroughs. The stereotype is: at one point you don’t know something, and then there’s a Eureka moment, and then you know something, and that’s a breakthrough. The very word itself implies some barrier through wh…
David Friedman. Private Rights Enforcement.
I imagine a society where there is no government. Where each individual is the customer of a firm that sells him the service of protecting his rights and settling his disputes. And this raises an obvious problem, which is if I have a dispute with you and …