yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Composite functions to model extraterrestrial skydiving


2m read
·Nov 10, 2024

We're told that Phlox is a skydiver on the planet Lernon. The function A of w is equal to 0.2 times w squared, which gives the area A in square meters under Flux's parachute when it has a width of w meters. That makes sense. The function V of A is equal to the square root of 900 over 980 over A, which gives Flux's maximum speed in meters per second when she skydives with an area of A square meters under her parachute.

All right, write an expression to model Flux's terminal velocity when her parachute is w meters wide. Then, they want us to evaluate the terminal velocity when her parachute is 14 meters wide. Well, let's just focus on the first part first. Pause the video and see if you can have a go at that.

All right, now let's just think about what they're asking us. They want us to model terminal velocity when her parachute is w meters wide. So really, what they want us to do is come up with a terminal velocity, let's call that V, that is a function of w, that is a function of the width of her parachute.

Well, we have a function here that gives terminal velocity as a function of the area of her parachute. But lucky for us, we have another function that gives us area as a function of width. So we could say this is going to be the same thing as V of this function right over here; I'll do another color: A of w.

So that is going to be equal to—let me keep the colors consistent—well, everywhere where I see an A in this expression, I would replace it with A of w, which is 0.2 w squared. So it's going to be equal to the square root of 980 over—instead of A, I am going to write—so instead of this, I am going to write 0.2 w squared because that is A as a function of w.

0.2 w squared. So this right over here, this is an expression that models Flux's terminal velocity V as a function of the width of her parachute. So that's what we have right over there.

And then the next part they say, what is Flux's terminal velocity when her parachute is 14 meters wide? Well, then we just have to say, okay, w is 14. Let's just evaluate this expression. So we'll get the square root of 980 over 0.2 times 14 squared.

Well, 14 squared is 196, and this would be equal to the square root of—let's see—980 divided by 196, I believe, is exactly five. So this would be five divided by 0.2, and so five divided by essentially one-fifth is the same thing as five times five.

So this would be the square root of 25, which is equal to five. And the terminal velocity, since we gave the width in meters, this is going to give us the maximum speed in meters per second: so 5 meters per second, and we're done.

More Articles

View All
HACK YOUTUBE COMMENTS ... and other pranks! -- Up All Knight #4
Vsauce! On Wednesday, a lot of you guys were asking for a new episode of Up All Night, our technical pranks and curiosities show. Unfortunately, these guys are still on vacation, but I’m going to try to do this alone. Let’s go to begin. You can break int…
Calculating residual example | Exploring bivariate numerical data | AP Statistics | Khan Academy
VI rents bicycles to tourists. She recorded the height in centimeters of each customer and the frame size in centimeters of the bicycle that customer rented. After plotting her results, she noticed that the relationship between the two variables was fairl…
Howard Marks: We're in an "Everything" Bubble
Today, we’re in an everything bubble. If he isn’t already, Howard Marks is an investor you should be listening to and learning from. He is the co-founder and co-chairman of Oaktree Capital Management, one of the most highly respected investment firms. In …
Manipulating the YouTube Algorithm - (Part 1/3) Smarter Every Day 213
A couple of months ago I made a Twitter thread about some weird activity I saw online, and after I posted that thread, tons of engineers from many different tech companies reached out to me privately to tell me their stories. My interest in all this start…
There’s a Bear in My Backyard | Podcast | Overheard at National Geographic
Foreign. It seemed to be happening everywhere this past summer. North of Boston, this is a very popular bear in Wilmington, popping up out of hedges and onto lawns. Near Saint Paul, Minnesota, in the video, you can see kids jumping off the playground equi…
Here's What Earthquakes Look Like From Inside the Earth | National Geographic
[Music] The question came up of whether you could hear earthquakes, and I said, “I don’t think so, but we could take the data and speed it up and listen to the whole planet ring after an [Music] earthquake.” The seismo show is an ongoing project in which…