yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Composite functions to model extraterrestrial skydiving


2m read
·Nov 10, 2024

We're told that Phlox is a skydiver on the planet Lernon. The function A of w is equal to 0.2 times w squared, which gives the area A in square meters under Flux's parachute when it has a width of w meters. That makes sense. The function V of A is equal to the square root of 900 over 980 over A, which gives Flux's maximum speed in meters per second when she skydives with an area of A square meters under her parachute.

All right, write an expression to model Flux's terminal velocity when her parachute is w meters wide. Then, they want us to evaluate the terminal velocity when her parachute is 14 meters wide. Well, let's just focus on the first part first. Pause the video and see if you can have a go at that.

All right, now let's just think about what they're asking us. They want us to model terminal velocity when her parachute is w meters wide. So really, what they want us to do is come up with a terminal velocity, let's call that V, that is a function of w, that is a function of the width of her parachute.

Well, we have a function here that gives terminal velocity as a function of the area of her parachute. But lucky for us, we have another function that gives us area as a function of width. So we could say this is going to be the same thing as V of this function right over here; I'll do another color: A of w.

So that is going to be equal to—let me keep the colors consistent—well, everywhere where I see an A in this expression, I would replace it with A of w, which is 0.2 w squared. So it's going to be equal to the square root of 980 over—instead of A, I am going to write—so instead of this, I am going to write 0.2 w squared because that is A as a function of w.

0.2 w squared. So this right over here, this is an expression that models Flux's terminal velocity V as a function of the width of her parachute. So that's what we have right over there.

And then the next part they say, what is Flux's terminal velocity when her parachute is 14 meters wide? Well, then we just have to say, okay, w is 14. Let's just evaluate this expression. So we'll get the square root of 980 over 0.2 times 14 squared.

Well, 14 squared is 196, and this would be equal to the square root of—let's see—980 divided by 196, I believe, is exactly five. So this would be five divided by 0.2, and so five divided by essentially one-fifth is the same thing as five times five.

So this would be the square root of 25, which is equal to five. And the terminal velocity, since we gave the width in meters, this is going to give us the maximum speed in meters per second: so 5 meters per second, and we're done.

More Articles

View All
We Can Have Explanations That Reach the Entire Universe
David Deutsch presents at the beginning of The Fabric of Reality this idea that you don’t need to know absolutely every single fact that needs to be known in order to understand fundamentally everything that can be understood. He was presenting this visio…
Adjectives and commas | Adjectives | Khan Academy
Hey Garans, hey Paige, hi David. Hey, so Paige, I went to the grocery store yesterday and I got this apple. Okay? I put it in the fridge, uh, and this morning when I opened the fridge, the apple was all like gross and sticky and mushy. I really want to w…
Homeroom with Sal & Rachel Skiffer - Tuesday, June 23
Hi everyone! Sal Khan here from Khan Academy. Welcome to our daily homeroom, which is our way of staying in touch. It started with obviously all the school closures and social distancing with COVID, but now it’s really just evolved into an interesting for…
Should You Eat Yourself?
Hey, Vsauce. Michael here. And Jake. And Kevin. And we are in Santa Monica, which of course means that the “V” in “Vsauce” will stand for the Roman numeral five, as in five questions from you guys. Our first question comes from “@notch”. He didn’t ask th…
Angular momentum of an extended object | Physics | Khan Academy
[Voiceover] So we saw in previous videos that a ball of mass m rotating in a circle of radius r at a speed v has what we call angular momentum, and the symbol we use for angular momentum is a capital L. The amount of angular momentum that it would have wo…
Adaptation and environmental change | Mechanisms of evolution | High school biology | Khan Academy
Hi everybody, Dr. Sammy here, your friendly neighborhood entomologist. Here to talk to you about how adaptation, which is dependent on the environment, responds in the context of environmental change. Natural selection promotes adaptation in populations. …