yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Conditions for MVT: table | Existence theorems | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've been given the value of h of x at a few values of x, and then we're told James said that since h of 7 minus h of 3 over 7 minus 3 is equal to 1.

So this is really the average rate of change between x is equal to 3 and x is equal to 7, between that point and that point right over there. Since that is equal to 1, there must be a number c in the closed interval from 3 to 7 for which the derivative at that value c is equal to 1.

So what James is trying to do is apply the mean value theorem, which tells us if the conditions apply for the mean value theorem. It tells us that if I'm going through two values—let's say this is a, let's say this is b—and let's say the function does something like this. If we meet the conditions for the mean value theorem, it tells us that there's some c in the closed interval from a to b where the derivative of c is equal to the average rate of change between a and b.

So the average rate of change between a and b would be the slope of the secant line right over there, and then we could just think about—well, looks like there are some points. The way I've drawn it, that point right over there seems to have the same slope, and this point right over there seems to have the same slope.

And so that's all what the mean value theorem is claiming: that there's going to be at least one c if we meet the conditions for the mean value theorem where the derivative at that point is the same as the average rate of change from the first endpoint to the second.

Now, what are the conditions for the mean value theorem to apply? And we've reviewed this in multiple videos. One way to think about it: If we're talking about the closed interval from 3 to 7, one condition is that you have to be differentiable over the open interval from 3 to 7. So that's the interval but not including the endpoints, and you have to be continuous over the entire closed interval, so including the endpoints.

And one interesting thing that we've mentioned before is that differentiability implies continuity. So, if something is differentiable over the open interval, it's also going to be continuous over this open interval. And so the second condition would just say: Well, then we also have to be continuous at the endpoints.

Now let’s look at the answers. So it says which condition makes James's claim true? So we have to feel good about these two things right over here in order to make James's claim.

Choice A: h is continuous over the closed interval from 3 to 7. So that does meet this second condition, but continuity does not imply differentiability. So that doesn't give us the confidence that we are differentiable over the open interval.

If you're differentiable, you're continuous, but if you're continuous, you're not necessarily differentiable. A classic example of that is if we have a sharp turn; something like that— we wouldn't be differentiable at that point, even though we are continuous there. So let me rule that one out.

So I'm going to rule that one out.

Choice B: h is continuous and decreasing over the closed interval from 3 to 7. No, that doesn't help us either because it still doesn’t mean you're differentiable. You could be continuous and then decreasing and still have one of these sharp turns where you're not differentiable. So we will rule this one out.

Choice C: h is differentiable over the closed interval from 3 to 7. This one feels good because if you're differentiable over the closed interval, you're definitely going to be differentiable over the open interval that does not include the endpoints. This is a subset of this right over here, and if you're differentiable over a closed interval, you're going to be continuous over it.

Differentiability implies continuity, so I like this choice right over here.

Now this last choice is the limit as x approaches five of h prime of x is equal to one. So they're saying the limit of our derivative as we approach five is equal to one.

Now that doesn't—we don't know for sure. This limit might be true, but that still does not necessarily imply that h prime of 5 is equal to 1. We still don't know that, and you know 5 is in this interval, but we still don't know just from this statement alone that there's definitely some c in the interval whose derivative is the same as the average rate of change over the interval.

So I would rule this one out as well.

More Articles

View All
Finding the mean and standard deviation of a binomial random variable | AP Statistics | Khan Academy
We’re told a company produces processing chips for cell phones at one of its large factories. Two percent of the chips produced are defective in some way. A quality check involves randomly selecting and testing 500 chips. What are the mean and standard de…
Neil and Katy Discuss Fingerprints and Individuality | StarTalk
Why are there seven million people? And why do each one of us have our own fingerprint? Even twins have different fingerprints, who are otherwise genetically identical. Why would you rather we were all the same? No, I’m not. Why is that more odd to you th…
TAOISM | The Art of Not Trying
Those who stand on tiptoes do not stand firmly. Those who rush ahead don’t get very far. Those who try to outshine others dim their own light. — Lao Tzu How can we improve when we stop trying to improve? Many people waste their efforts trying to better …
Real Estate Agent Live Call: Step by Step Listing Presentation 101
It’s not so much about even the marketing, but also the agent and how motivated they are to sell it. You can explain to her, if she says how many other homes would be sold, how long have you been doing this, stuff like that. You could just be honest there…
Limits at infinity of quotients with square roots (even power) | AP Calculus AB | Khan Academy
Let’s see if we can find the limit as x approaches negative infinity of the square root of four x to the fourth minus x over two x squared plus three. And like always, pause this video and see if you can figure it out. Well, whenever we’re trying to find…
'This Is Karma, Ladies And Gentlemen!': Dana White Speaks During Trump Victory Celebration
We also have a Manda White who has done some job. He’s that tough guy. So Dana started UFC and, uh, came to me. Do you mind if I use your? Nobody wanted to give him a ring because they said it’s a rough sport—a little rough. I helped him out a little bit,…