yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Conditions for MVT: table | Existence theorems | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've been given the value of h of x at a few values of x, and then we're told James said that since h of 7 minus h of 3 over 7 minus 3 is equal to 1.

So this is really the average rate of change between x is equal to 3 and x is equal to 7, between that point and that point right over there. Since that is equal to 1, there must be a number c in the closed interval from 3 to 7 for which the derivative at that value c is equal to 1.

So what James is trying to do is apply the mean value theorem, which tells us if the conditions apply for the mean value theorem. It tells us that if I'm going through two values—let's say this is a, let's say this is b—and let's say the function does something like this. If we meet the conditions for the mean value theorem, it tells us that there's some c in the closed interval from a to b where the derivative of c is equal to the average rate of change between a and b.

So the average rate of change between a and b would be the slope of the secant line right over there, and then we could just think about—well, looks like there are some points. The way I've drawn it, that point right over there seems to have the same slope, and this point right over there seems to have the same slope.

And so that's all what the mean value theorem is claiming: that there's going to be at least one c if we meet the conditions for the mean value theorem where the derivative at that point is the same as the average rate of change from the first endpoint to the second.

Now, what are the conditions for the mean value theorem to apply? And we've reviewed this in multiple videos. One way to think about it: If we're talking about the closed interval from 3 to 7, one condition is that you have to be differentiable over the open interval from 3 to 7. So that's the interval but not including the endpoints, and you have to be continuous over the entire closed interval, so including the endpoints.

And one interesting thing that we've mentioned before is that differentiability implies continuity. So, if something is differentiable over the open interval, it's also going to be continuous over this open interval. And so the second condition would just say: Well, then we also have to be continuous at the endpoints.

Now let’s look at the answers. So it says which condition makes James's claim true? So we have to feel good about these two things right over here in order to make James's claim.

Choice A: h is continuous over the closed interval from 3 to 7. So that does meet this second condition, but continuity does not imply differentiability. So that doesn't give us the confidence that we are differentiable over the open interval.

If you're differentiable, you're continuous, but if you're continuous, you're not necessarily differentiable. A classic example of that is if we have a sharp turn; something like that— we wouldn't be differentiable at that point, even though we are continuous there. So let me rule that one out.

So I'm going to rule that one out.

Choice B: h is continuous and decreasing over the closed interval from 3 to 7. No, that doesn't help us either because it still doesn’t mean you're differentiable. You could be continuous and then decreasing and still have one of these sharp turns where you're not differentiable. So we will rule this one out.

Choice C: h is differentiable over the closed interval from 3 to 7. This one feels good because if you're differentiable over the closed interval, you're definitely going to be differentiable over the open interval that does not include the endpoints. This is a subset of this right over here, and if you're differentiable over a closed interval, you're going to be continuous over it.

Differentiability implies continuity, so I like this choice right over here.

Now this last choice is the limit as x approaches five of h prime of x is equal to one. So they're saying the limit of our derivative as we approach five is equal to one.

Now that doesn't—we don't know for sure. This limit might be true, but that still does not necessarily imply that h prime of 5 is equal to 1. We still don't know that, and you know 5 is in this interval, but we still don't know just from this statement alone that there's definitely some c in the interval whose derivative is the same as the average rate of change over the interval.

So I would rule this one out as well.

More Articles

View All
Estimating multi-digit addition and subtraction word problems | Grade 5 (TX TEKS) | Khan Academy
We’re told Minley has 158,159 flight points. About how many total flight points does Minley have now? So why don’t you pause this video and have a go at it? And remember, they don’t want you to figure out the exact number; they just say about how many. So…
Fisherman With No Fish | Years of Living Dangerously
Through frequent dive trips to Appo Island, Renee has befriended many of the locals. Come over here, John Zenan is a third-generation fisherman who has spent his entire life on the island, living off its resources. He and his son Jory make daily trips to …
Metric system unit conversion examples
Tomas dropped off two packages to be shipped. One package weighed 1.38 kg and the other package weighed 720 g. So the first one they given in kilograms and the second one they give us in grams. What was the combined weight of both packages in grams? So w…
Earth Is Running Out of Space
7.7 billion. That’s the estimated number of people in the world today. To put it in perspective, that’s 110,000 NFL stadiums filled to capacity. If each of us were to hold hands, we would surround the entire circumference of the earth 345 times. The conce…
Identifying unit fractions word problem | Math | 3rd grade | Khan Academy
This question says Vera’s dinner plate is divided into three equal size sections. Vera puts all her broccoli in one section, and then we’re asked what fraction of Vera’s plate has broccoli. Okay, so we have a plate with three equal size sections, and we …
Varying Definitions of “Awesome” | StarTalk
So, what do you, you’re impressed that food can come out of a machine? Hot, hot food! You press a button, you just… It’s like a real vending machine that you would get chips from. But instead, it’s like all these burgers, and they taste disgusting. But th…