yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Conditions for MVT: table | Existence theorems | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we've been given the value of h of x at a few values of x, and then we're told James said that since h of 7 minus h of 3 over 7 minus 3 is equal to 1.

So this is really the average rate of change between x is equal to 3 and x is equal to 7, between that point and that point right over there. Since that is equal to 1, there must be a number c in the closed interval from 3 to 7 for which the derivative at that value c is equal to 1.

So what James is trying to do is apply the mean value theorem, which tells us if the conditions apply for the mean value theorem. It tells us that if I'm going through two values—let's say this is a, let's say this is b—and let's say the function does something like this. If we meet the conditions for the mean value theorem, it tells us that there's some c in the closed interval from a to b where the derivative of c is equal to the average rate of change between a and b.

So the average rate of change between a and b would be the slope of the secant line right over there, and then we could just think about—well, looks like there are some points. The way I've drawn it, that point right over there seems to have the same slope, and this point right over there seems to have the same slope.

And so that's all what the mean value theorem is claiming: that there's going to be at least one c if we meet the conditions for the mean value theorem where the derivative at that point is the same as the average rate of change from the first endpoint to the second.

Now, what are the conditions for the mean value theorem to apply? And we've reviewed this in multiple videos. One way to think about it: If we're talking about the closed interval from 3 to 7, one condition is that you have to be differentiable over the open interval from 3 to 7. So that's the interval but not including the endpoints, and you have to be continuous over the entire closed interval, so including the endpoints.

And one interesting thing that we've mentioned before is that differentiability implies continuity. So, if something is differentiable over the open interval, it's also going to be continuous over this open interval. And so the second condition would just say: Well, then we also have to be continuous at the endpoints.

Now let’s look at the answers. So it says which condition makes James's claim true? So we have to feel good about these two things right over here in order to make James's claim.

Choice A: h is continuous over the closed interval from 3 to 7. So that does meet this second condition, but continuity does not imply differentiability. So that doesn't give us the confidence that we are differentiable over the open interval.

If you're differentiable, you're continuous, but if you're continuous, you're not necessarily differentiable. A classic example of that is if we have a sharp turn; something like that— we wouldn't be differentiable at that point, even though we are continuous there. So let me rule that one out.

So I'm going to rule that one out.

Choice B: h is continuous and decreasing over the closed interval from 3 to 7. No, that doesn't help us either because it still doesn’t mean you're differentiable. You could be continuous and then decreasing and still have one of these sharp turns where you're not differentiable. So we will rule this one out.

Choice C: h is differentiable over the closed interval from 3 to 7. This one feels good because if you're differentiable over the closed interval, you're definitely going to be differentiable over the open interval that does not include the endpoints. This is a subset of this right over here, and if you're differentiable over a closed interval, you're going to be continuous over it.

Differentiability implies continuity, so I like this choice right over here.

Now this last choice is the limit as x approaches five of h prime of x is equal to one. So they're saying the limit of our derivative as we approach five is equal to one.

Now that doesn't—we don't know for sure. This limit might be true, but that still does not necessarily imply that h prime of 5 is equal to 1. We still don't know that, and you know 5 is in this interval, but we still don't know just from this statement alone that there's definitely some c in the interval whose derivative is the same as the average rate of change over the interval.

So I would rule this one out as well.

More Articles

View All
The Meaning of Life
The meaning of life question is kind of a nonsense question. Any end goal will just lead to kind of another goal, lead to another goal. We just play games in life, right? You grow up, you’re playing the school game. You’re playing the social game, then yo…
a productive day in the life vlog
Hi guys, it’s me, Ruri. So yeah, I just woke up. I head to the bathroom, I took a very cold shower, and now I’m doing my skincare routine. After doing my skincare, I’ll make myself some coffee and start studying. Peace. Oh, why does my hair look this weir…
When there aren't gains from trade | Basic economics concepts | AP Macroeconomics | Khan Academy
So let’s say we’re in a very simplified world where we have two countries: Country A and Country B. They’re each capable of producing apples or bananas or some combination of them. What this chart tells us is if Country A put all of their energy behind ap…
Galaxies and gravity | Earth in space | Middle school Earth and space science | Khan Academy
Hello everyone! Today we’re going to be talking about galaxies and gravity. We know the Earth is a planet that is in orbit around the Sun. This is called the heliocentric model, and the solar system is an enormous space for us, encompassing every place th…
Meditation: Can It Really Rewire Our Brains?
Take a deep breath. Can you feel that immediate sense of calm, like a weight has been lifted off of your shoulders, even if just for a second? If you’re watching this right now, there’s a huge chance that you’ve just sat down after a busy day, or perhaps …
How To Make A Living With NO "Job" | The Morning Toast Podcast
[Music] Can you tell us you brought us a gift. You set up this entire little moment. What is going on here? Well, today is a very special day in New York and I haven’t been to New York for over a year because of the whole COVID thing. But today my wine c…