yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Domain and range of lines, segments, and rays | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

So what we have here is two different F of XS defined by their graphs, and what we want to do is figure out the domain and the range for each of these functions. So pause this video and try to figure that on your own before we do that together.

Now let's just remind ourselves what domain and range is. So actually, let's remind ourselves what a function is. A function can take an input X, and then it is, so have a function f, and it's going to output something. It's going to output f of x.

So a question is, what are all of the X's that this function can take? So the set of all things that this function can take in, all of the inputs that it can take in, that is our domain. And then all of the possible outputs, that is our range.

So let's first think about the domain, and maybe I'll do this in different colors. So first the domain. So what are all of the potential x's over which this function is defined? Well, it's not defined if x is equal to -6. I don't know what f of x is there. We can see it is defined at x at -4 because I see that f of -4 is 8 right over there, and I'm going to fill it in to show that it's definitely defined there.

It's defined from -4, and we can keep increasing x, keep increasing x all the way until, but not quite at 8, because right at x equals 8, the function isn't defined. We have an open circle there. It is defined everywhere up to that but not including.

Just as a reminder, the open circle means you can get close to it, but you don't include that number, while the closed circle means that you do include it. So what we can see is the smallest value in our domain is x being -4.

So x is going to be -4 is less than or equal to x, which is then going to be less than 8. Why didn't I say less than or equal to 8? Because it is an open circle here. The function is not defined at x = 8.

Now, what is the range going to be? The range is all of the potential values that the output that f of x can take on. So we can start down here at x at, it looks like at x equals 8. We don't quite take on, we're tempted to say that f of 8 is 2, but it's not. It doesn't quite count because we have an open circle there.

But I'll put an open circle here, because as soon as you get lower x's, we can see that our function is defined. And so the function can take on values right above 2, all the way to, it looks like the function can take on a value as high as 8. So I will circle that in right over here.

We can see that f of -4 is 8. So how would we define the range right over here? Well, we can start at 2, but the function can't take on 2. So the function is going to be greater than 2. It's not greater than or equal to, or 2 is less than the function.

It's not 2 is less than or equal to, but then the function can go all the way up to including 8. And so we're done with the range of this first function.

Now let's do the same thing over here. What is the domain? I'll do that in same purple color domain. Well, it looks like pretty much any real number x that you were to input, the function is defined over it. So you could take any x right over here, and the function is defined.

I can tell you what f of -10 is; I could tell you because this line just keeps going on and on and on. And so the domain is all real values of x. And now you could imagine what the range might be, because this line is going to keep increasing and increasing and increasing forever.

So you can have an arbitrarily high f of x. And similarly, this line is going to keep decreasing and decreasing and decreasing forever as we go to the left. And so you could have an arbitrary low value of f of x. So the range here is all real values of f of x, and we are done.

More Articles

View All
Can We Really Touch Anything?
[Applause] Can we, can we really touch something? So, I can touch the camera. The question of, can we really touch something, is a great one. Well, let’s say we have two electrons. I imagine what we mean by touching is that they come in and they actually…
Introduction to 3d graphs | Multivariable calculus | Khan Academy
Hello everyone! So, what I’d like to do here is describe how we think about three-dimensional graphs. Three-dimensional graphs are a way that we represent a certain kind of multivariable function, the kind that has two inputs, or rather a two-dimensional…
The Urge To Jump
Have you ever stood near the edge of a cliff, with only a short fence separating you from the chasm below? As you held on tightly to that fence, did you feel a sudden urge to throw yourself off the cliff? Have you ever been driving and imagined what it wo…
Differentiability at a point: graphical | Derivatives introduction | AP Calculus AB | Khan Academy
The graph of function f is given below. It has a vertical tangent at the point (3, 0). So (3, 0) has a vertical tangent. Let me draw that. So it has a vertical tangent right over there and a horizontal tangent at the point (0, -3). (0, -3) has a horizonta…
Why it’s EASIER to sell a $3,000,000 house vs a $300,000 house
What’s up, you guys? It’s Graham here. So, I get a lot of comments from aspiring real estate agents who think that the higher the price point, the more difficult the deal. Some like dealing with really high net worth buyers or sellers. Just because you’r…
The Problem With Rich People
Pick up to the sound of the alarm on your iPhone, and annoyed that you couldn’t get more sleep, you grudgingly unlock your phone to see what’s going on in the world. There’s an email from Amazon telling you that your package has been delivered. So, you fo…