yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Comparing features of quadratic functions | Mathematics II | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we're asked which function has the greater Y intercept.

The Y intercept is the y-coordinate when X is equal to zero. So F of 0, when X is equal to zero, the function is equal to, let's see, F of 0 is going to be equal to 0 - 0 + 4, is going to be equal to 4. So this function right over here has a y-intercept of four. It would intersect the Y axis right over there.

While the function that we're comparing it to, G of X, we're looking at its graph. Y is equal to G of x, and its Y intercept is right over here at Y is equal to 3. So which function has a greater Y intercept? Well, it's going to be f of x. F of x has a greater Y intercept than G of X does.

Let's do a few more of these where we're comparing different functions, one of them that has a visual depiction and one of them where we're just given the equation. How many roots do the functions have in common? Well, G of X, we can see it. Their roots are x = -1 and x = 2. So at these two functions, at most, are going to have two roots in common because G of X only has two roots.

There's a couple of ways we could tackle it. We could just try to find F's roots, or we could plug in either one of these values and see if it makes the function equal to zero. I'll do the first way; I'll try to factor this. So let's see, what two numbers, if I add them, do I get one? Because that's the coefficient here, or implicitly there.

And if I take their product, I get -6. Well, they're going to have to have different signs since their product is negative. So let's see, -3 and positive 2. No, actually the other way around because it's positive 1. So positive 3 and -2. So this is equal to x + 3 * x - 2. So f of x is going to have zeros when x is equal to -3 or x is equal to 2.

These are the two zeros; if x is equal to 3, this expression becomes 0. 0 * anything is 0. If x is 2, this expression becomes 0, and 0 * anything is 0. So F of -3 is zero and F of two is zero. These are the zeros of that function.

So let's see which of these are in common. Well, -3 is out here; that's not in common. X = 2 is in common, so they only have one common zero right over there. So how many roots do the functions have in common? One.

All right, let's do one more of these, and they ask us, do the functions have the same concavity? The way I think, or one way to think about concavity, is whether it's opening upwards or opening downwards. So this is often viewed as concave upwards and this is viewed as concave downwards—concave downwards.

The key realization is, well, you know, if you just look at this blue, if you look at G of X right over here, it is concave downwards. So the question is, would this be concave downwards or upwards? The key here is the coefficient on the second-degree term, on the square x term. If the coefficient is positive, you're going to be concave upwards.

As X gets suitably far away from zero, this term is going to overpower everything else and it's going to become positive. So, as X gets further and further away, or not even further away from zero, as X gets further and further away from the vertex, this term dominates everything else and we get more and more positive values.

That's why if your coefficient is positive, you're going to have a concave upwards graph. So if this is concave upwards, this one is clearly concave downwards. They do not have the same concavity. So, no, if this was -4x^2 - 108, then it would be concave downwards and we would say yes.

Anyway, hopefully, you found that interesting.

More Articles

View All
How do writers use examples to get their points across? | Reading | Khan Academy
[David] Hello, readers. Today I wanna talk about examples and how writers use them in informational text. As writers, we employ examples to help explain ideas. And as readers, we use those examples to grab hold of those ideas and better understand them. …
Warren Buffett: "Rule #1: Never lose money. Rule #2: Never forget rule #1."
Warren Buffett: The first rule of investment is: Don’t lose. And the second rule of investment is: Don’t forget the first rule. And that’s all the rules there are. I mean, if you buy things for far below what they’re worth, and you buy a group of them, yo…
Radical functions differentiation intro | Derivative rules | AP Calculus AB | Khan Academy
Let’s say that we have a function f of x, and it is equal to -4 times the cube root of x. What we want to do is evaluate the derivative of our function when x is equal to 8. So, see if you can figure this out. All right, now this might look foreign to yo…
Mr. Freeman, part 06
Yes, I know, I know. The worst crime is to call people to independence and freedom… a straight way to chaos and mutual destruction. I… I… just didn’t know not what I was doing. Now I understand. If… if… you let me, I will tell them all right now! DID YOU!…
Why Their Story Matters | The Long Road Home
We all should be aware of every single person who dies fighting for our freedom and democracy around the world. Where we’re going, Sadr City, over two million people lived under a dictator’s boot for 24 years. And we can build a better future for them, f…
Rising Ocean Temperatures are "Cooking" Coral Reefs | National Geographic
Foreign. We’ve now had three major bleaching events on the Great Barrier Reef: in ‘98, 2002, and again just recently in 2016. We zigzagged along the whole length in a helicopter and fixed-wing plane. We put about 100 people underwater. The extent and sev…