yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Comparing features of quadratic functions | Mathematics II | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we're asked which function has the greater Y intercept.

The Y intercept is the y-coordinate when X is equal to zero. So F of 0, when X is equal to zero, the function is equal to, let's see, F of 0 is going to be equal to 0 - 0 + 4, is going to be equal to 4. So this function right over here has a y-intercept of four. It would intersect the Y axis right over there.

While the function that we're comparing it to, G of X, we're looking at its graph. Y is equal to G of x, and its Y intercept is right over here at Y is equal to 3. So which function has a greater Y intercept? Well, it's going to be f of x. F of x has a greater Y intercept than G of X does.

Let's do a few more of these where we're comparing different functions, one of them that has a visual depiction and one of them where we're just given the equation. How many roots do the functions have in common? Well, G of X, we can see it. Their roots are x = -1 and x = 2. So at these two functions, at most, are going to have two roots in common because G of X only has two roots.

There's a couple of ways we could tackle it. We could just try to find F's roots, or we could plug in either one of these values and see if it makes the function equal to zero. I'll do the first way; I'll try to factor this. So let's see, what two numbers, if I add them, do I get one? Because that's the coefficient here, or implicitly there.

And if I take their product, I get -6. Well, they're going to have to have different signs since their product is negative. So let's see, -3 and positive 2. No, actually the other way around because it's positive 1. So positive 3 and -2. So this is equal to x + 3 * x - 2. So f of x is going to have zeros when x is equal to -3 or x is equal to 2.

These are the two zeros; if x is equal to 3, this expression becomes 0. 0 * anything is 0. If x is 2, this expression becomes 0, and 0 * anything is 0. So F of -3 is zero and F of two is zero. These are the zeros of that function.

So let's see which of these are in common. Well, -3 is out here; that's not in common. X = 2 is in common, so they only have one common zero right over there. So how many roots do the functions have in common? One.

All right, let's do one more of these, and they ask us, do the functions have the same concavity? The way I think, or one way to think about concavity, is whether it's opening upwards or opening downwards. So this is often viewed as concave upwards and this is viewed as concave downwards—concave downwards.

The key realization is, well, you know, if you just look at this blue, if you look at G of X right over here, it is concave downwards. So the question is, would this be concave downwards or upwards? The key here is the coefficient on the second-degree term, on the square x term. If the coefficient is positive, you're going to be concave upwards.

As X gets suitably far away from zero, this term is going to overpower everything else and it's going to become positive. So, as X gets further and further away, or not even further away from zero, as X gets further and further away from the vertex, this term dominates everything else and we get more and more positive values.

That's why if your coefficient is positive, you're going to have a concave upwards graph. So if this is concave upwards, this one is clearly concave downwards. They do not have the same concavity. So, no, if this was -4x^2 - 108, then it would be concave downwards and we would say yes.

Anyway, hopefully, you found that interesting.

More Articles

View All
15 Things Rich People Advise But Never Do
Everyone looks for advice from the rich, but advice is not universally applicable, and even they don’t follow it, and for good reason. Here are 15 things rich people advise but never actually do. Welcome to Alux. Number one: go to school. Going to school…
Composite functions to model extraterrestrial skydiving
We’re told that Phlox is a skydiver on the planet Lernon. The function A of w is equal to 0.2 times w squared, which gives the area A in square meters under Flux’s parachute when it has a width of w meters. That makes sense. The function V of A is equal t…
Derivative of ln(x) | Advanced derivatives | AP Calculus AB | Khan Academy
So in this video, we’re going to think about what the derivative with respect to X of the natural log of X is. I’m going to go straight to the punch line: it is equal to 1 over X. In a future video, I’m actually going to prove this. It’s a little bit invo…
Ask me anything with Sal Khan: April 16 | Homeroom with Sal
Hi everyone! Sal Khan here from Khan Academy. Welcome to our daily homeroom livestream. The whole goal of this is for all of us to stay connected during times of school closures. Depending on the day, this is a time for all of y’all to ask questions of my…
EXCLUSIVE: Confronting an Accused Ivory Smuggler | National Geographic
As part of his ivory trafficking investigation, Brian Christie has led to a small West African port in L Togo where the largest African ivory seizure in over a quarter century was recently discovered by Lieutenant Kier A. One of the men arrested at the sc…
How to Be a Great Founder with Reid Hoffman (How to Start a Startup 2014: Lecture 13)
So when I looked through the syllabus to this class and thought about what I could possibly add that would be useful in addition to the very skills, one of the things I’ve been thinking about has been how do you think about yourself as a founder? How do y…