yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of sin(x) and cos(x) | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What I'd like to do in this video is get an intuitive sense for what the derivative with respect to x of sine of x is and what the derivative with respect to x of cosine of x is. I've graphed y is equal to cosine of x in blue and y is equal to sine of x in red. We're not going to prove what the derivatives are, but we're going to know what they are and get an intuitive sense. In future videos, we'll actually do a proof.

So let's start with sine of x. The derivative can be viewed as the slope of the tangent line. So for example, at this point right over here, it looks like the slope of our tangent line should be zero. So our derivative function should be zero at that x value. Similarly, over here, it looks like the derivative is zero; the slope of the tangent line would be zero. So whatever our derivative function is at that x value, it should be equal to zero.

If we look right over here on sine of x, it looks like the slope of the tangent line would be pretty close to 1. If that is the case, then in our derivative function, when x is equal to 0, that derivative function should be equal to one. Similarly, over here, it looks like the slope of the tangent line is negative one, which tells us that the derivative function should be hitting the value of negative one at that x value.

So you're probably seeing something interesting emerge everywhere. While we’re trying to plot the slope of the tangent line, it seems to coincide with y is equal to cosine of x. And it is indeed the case that the derivative of sine of x is equal to cosine of x. You can see that it makes sense, not just at the points we tried, but even in the trends. If you look at sine of x here, the slope is one, but then it becomes less and less positive all the way until it becomes zero.

Cosine of x, the value of the function is one, and it becomes less and less positive all the way until it equals zero. You could keep doing that type of analysis to feel good about it. In another video, we're going to prove this more rigorously.

So now let's think about cosine of x. Cosine of x right over here, the slope of the tangent line looks like it is zero, and so its derivative function needs to be zero at that point. So hey, maybe it's sine of x. Let's keep trying this.

So over here, cosine of x looks like the slope of the tangent line is negative one, and so we would want the derivative to go through that point right over there. All right, this is starting to seem; it doesn't seem like the derivative of cosine of x could be sine of x. In fact, this is the opposite of what sine of x is doing. Sine of x is at one, not negative one at that point. But that's an interesting theory: maybe the derivative of cosine of x is negative sine of x.

So let's plot that. So this does seem to coincide. The derivative of cosine of x here looks like negative one, the slope of the tangent line, and negative sine of this x value is negative one. Over here, the derivative of cosine of x looks like it is zero, and negative sine of x is indeed zero.

So it actually turns out that it is the case that the derivative of cosine of x is negative sine of x. So these are really good to know. These are kind of fundamental trigonometric derivatives to know. We'll be able to derive other things for them, and hopefully, this video gives you a good intuitive sense of why this is true. In future videos, we will prove it rigorously.

More Articles

View All
5 things you probably need to hear
Here are five things you probably need to hear. Number one: Not everything that happens to you is your fault, but everything that happens to you is your responsibility. Right off the bat, you might think to yourself, “Everything is my responsibility.” Ho…
A message from Sal Khan for the Khan Academy 2016 Annual Report
Welcome to the KH Academy 2016 annual report. In the actual text of the report, we’re going to go into a lot more detail on the financials and other things, but I’m hoping here to give you an overview, big picture. 2016 was a great year for Khan Academy.…
What advice do you have for someone wanting to be an entrepreneur?
So, what advice would I have for someone who wants to be an entrepreneur? Everyone’s path is different, so take anything I have to say with a grain of salt. A lot of folks think of entrepreneurship as, “Hey, I have a new idea for a business,” whether it’…
Good Explanations Are Acts of Creativity
There’s a phrase that you’re going to hear both Brett and I use over and over again, and that phrase is good explanations. Good explanations is Deutsche’s improvement upon the scientific method. At the same time, it’s beyond science. It’s not just true in…
Camille Fournier on Managing Technical Teams
All right, Camila Fournier, welcome to the podcast. Thank you for having me! So, you are a managing director at 2 Sigma, former CTO of Rent the Runway, former VP of Technology at Goldman Sachs, also an author. Your first book was The Manager’s Path: A Gu…
Stock Market. Ponzi Scheme. Fully explained. (No Music)
When we think about the stock market, we think about money, the finance industry, businesses, and making money from investing in successful businesses. The belief is investing in successful businesses is what leads to investment profits, and there’s a dir…