yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of sin(x) and cos(x) | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What I'd like to do in this video is get an intuitive sense for what the derivative with respect to x of sine of x is and what the derivative with respect to x of cosine of x is. I've graphed y is equal to cosine of x in blue and y is equal to sine of x in red. We're not going to prove what the derivatives are, but we're going to know what they are and get an intuitive sense. In future videos, we'll actually do a proof.

So let's start with sine of x. The derivative can be viewed as the slope of the tangent line. So for example, at this point right over here, it looks like the slope of our tangent line should be zero. So our derivative function should be zero at that x value. Similarly, over here, it looks like the derivative is zero; the slope of the tangent line would be zero. So whatever our derivative function is at that x value, it should be equal to zero.

If we look right over here on sine of x, it looks like the slope of the tangent line would be pretty close to 1. If that is the case, then in our derivative function, when x is equal to 0, that derivative function should be equal to one. Similarly, over here, it looks like the slope of the tangent line is negative one, which tells us that the derivative function should be hitting the value of negative one at that x value.

So you're probably seeing something interesting emerge everywhere. While we’re trying to plot the slope of the tangent line, it seems to coincide with y is equal to cosine of x. And it is indeed the case that the derivative of sine of x is equal to cosine of x. You can see that it makes sense, not just at the points we tried, but even in the trends. If you look at sine of x here, the slope is one, but then it becomes less and less positive all the way until it becomes zero.

Cosine of x, the value of the function is one, and it becomes less and less positive all the way until it equals zero. You could keep doing that type of analysis to feel good about it. In another video, we're going to prove this more rigorously.

So now let's think about cosine of x. Cosine of x right over here, the slope of the tangent line looks like it is zero, and so its derivative function needs to be zero at that point. So hey, maybe it's sine of x. Let's keep trying this.

So over here, cosine of x looks like the slope of the tangent line is negative one, and so we would want the derivative to go through that point right over there. All right, this is starting to seem; it doesn't seem like the derivative of cosine of x could be sine of x. In fact, this is the opposite of what sine of x is doing. Sine of x is at one, not negative one at that point. But that's an interesting theory: maybe the derivative of cosine of x is negative sine of x.

So let's plot that. So this does seem to coincide. The derivative of cosine of x here looks like negative one, the slope of the tangent line, and negative sine of this x value is negative one. Over here, the derivative of cosine of x looks like it is zero, and negative sine of x is indeed zero.

So it actually turns out that it is the case that the derivative of cosine of x is negative sine of x. So these are really good to know. These are kind of fundamental trigonometric derivatives to know. We'll be able to derive other things for them, and hopefully, this video gives you a good intuitive sense of why this is true. In future videos, we will prove it rigorously.

More Articles

View All
2022 Berkshire Hathaway Annual Meeting | 10 Minute Summary
Each year, 40,000 Warren Buffett fans and Berkshire Hathaway shareholders gather in scenic Omaha, Nebraska, to listen to investing legends Warren Buffett and Charlie Munger share their thoughts on everything from the stock market and investing all the way…
LearnStorm Growth Mindset: How to write a SMART goal
Welcome back! So, we’ve learned that it’s important to keep working through your frustrations by using the right learning strategies. The more you work through your frustration, the more your brain grows, right? But it can be difficult to work through tha…
How the Kushites Took Over Egypt | Flooded Tombs of the Nile
[tense music] Nuri is one of the most intensive concentrations of pyramids anywhere in the world, across any culture and civilization. [upbeat music] In Sudan, in fact, there are more pyramids than in Egypt. And this is something that people don’t think …
Shadow Work | Owning Your Dark Side (feat. Emerald)
We have not understood yet that the discovery of the unconscious means an enormous spiritual task, which must be accomplished if we wish to preserve our civilization. Carl Jung. Human civilization consists of countless traditions, codes of conduct, and s…
How Money Works
Money. How does that word make you feel? Is it a rush of adrenaline? Dollar signs running through your head like a slot machine? Perhaps you feel motivated, ready to send those work emails you’ve been putting off or spend an extra hour writing that movie …
Circadian Blues | National Geographic
A suburban home here looks like cunning predators who will not rest until they have driven sleep into extinction. They have evolved to emit a blue light that is remarkably similar to daylight. Humans, attracted by the light, soon find themselves mesmerize…