yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of sin(x) and cos(x) | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What I'd like to do in this video is get an intuitive sense for what the derivative with respect to x of sine of x is and what the derivative with respect to x of cosine of x is. I've graphed y is equal to cosine of x in blue and y is equal to sine of x in red. We're not going to prove what the derivatives are, but we're going to know what they are and get an intuitive sense. In future videos, we'll actually do a proof.

So let's start with sine of x. The derivative can be viewed as the slope of the tangent line. So for example, at this point right over here, it looks like the slope of our tangent line should be zero. So our derivative function should be zero at that x value. Similarly, over here, it looks like the derivative is zero; the slope of the tangent line would be zero. So whatever our derivative function is at that x value, it should be equal to zero.

If we look right over here on sine of x, it looks like the slope of the tangent line would be pretty close to 1. If that is the case, then in our derivative function, when x is equal to 0, that derivative function should be equal to one. Similarly, over here, it looks like the slope of the tangent line is negative one, which tells us that the derivative function should be hitting the value of negative one at that x value.

So you're probably seeing something interesting emerge everywhere. While we’re trying to plot the slope of the tangent line, it seems to coincide with y is equal to cosine of x. And it is indeed the case that the derivative of sine of x is equal to cosine of x. You can see that it makes sense, not just at the points we tried, but even in the trends. If you look at sine of x here, the slope is one, but then it becomes less and less positive all the way until it becomes zero.

Cosine of x, the value of the function is one, and it becomes less and less positive all the way until it equals zero. You could keep doing that type of analysis to feel good about it. In another video, we're going to prove this more rigorously.

So now let's think about cosine of x. Cosine of x right over here, the slope of the tangent line looks like it is zero, and so its derivative function needs to be zero at that point. So hey, maybe it's sine of x. Let's keep trying this.

So over here, cosine of x looks like the slope of the tangent line is negative one, and so we would want the derivative to go through that point right over there. All right, this is starting to seem; it doesn't seem like the derivative of cosine of x could be sine of x. In fact, this is the opposite of what sine of x is doing. Sine of x is at one, not negative one at that point. But that's an interesting theory: maybe the derivative of cosine of x is negative sine of x.

So let's plot that. So this does seem to coincide. The derivative of cosine of x here looks like negative one, the slope of the tangent line, and negative sine of this x value is negative one. Over here, the derivative of cosine of x looks like it is zero, and negative sine of x is indeed zero.

So it actually turns out that it is the case that the derivative of cosine of x is negative sine of x. So these are really good to know. These are kind of fundamental trigonometric derivatives to know. We'll be able to derive other things for them, and hopefully, this video gives you a good intuitive sense of why this is true. In future videos, we will prove it rigorously.

More Articles

View All
Horses vs. Horsepower: Watch Historic Rides Race Each Other | National Geographic
History is important, and we get hundred-year-old vehicles out and run. We feel that the educational aspect of someone being able to see these cars in motion is well beyond what someone would learn simply by watching the cars in a museum. Welcome to Race…
How I started selling private jets!
People always ask me all the time, “How did you get started selling private jets?” I used to work in this nightclub restaurant almost every night, and this one gentleman who used to come in had a jet on his tie pin. I would ask him, “Why would you have a …
The brain's hidden superpower
Let me know if you’ve ever been in this situation: you’re sitting down writing something, and you’ve been struggling for hours trying to find the right words. It’s super painful and frustrating, and no good ideas are coming to your head. But all of a sudd…
Developing the Future of Transportation | National Geographic
(light music) [Jamie Hall] As we look ahead to an all-electric future, we really talk about not leaving anyone behind. (light music) The San Joaquin Valley in California. It has some major challenges. It’s got some of the most severe poverty and the wo…
Big Bend's New Bear Cubs | America's National Parks | National Geographic
NARRATOR: Nearly 6,000 feet up in the mountains, another mom has a huge challenge. A female black bear has spent the winter in a high mountain cave. She needs to teach her cubs to survive in the park. With little to no food or water for months, the stakes…
How the comfort zone is ruining your life
[Music] There’s a weird phenomenon I’ve noticed all throughout my life where the more I subject myself to discomfort, the happier I am. I think this phenomenon became increasingly apparent to me in first year of university where I wanted to make the best …