yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of sin(x) and cos(x) | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What I'd like to do in this video is get an intuitive sense for what the derivative with respect to x of sine of x is and what the derivative with respect to x of cosine of x is. I've graphed y is equal to cosine of x in blue and y is equal to sine of x in red. We're not going to prove what the derivatives are, but we're going to know what they are and get an intuitive sense. In future videos, we'll actually do a proof.

So let's start with sine of x. The derivative can be viewed as the slope of the tangent line. So for example, at this point right over here, it looks like the slope of our tangent line should be zero. So our derivative function should be zero at that x value. Similarly, over here, it looks like the derivative is zero; the slope of the tangent line would be zero. So whatever our derivative function is at that x value, it should be equal to zero.

If we look right over here on sine of x, it looks like the slope of the tangent line would be pretty close to 1. If that is the case, then in our derivative function, when x is equal to 0, that derivative function should be equal to one. Similarly, over here, it looks like the slope of the tangent line is negative one, which tells us that the derivative function should be hitting the value of negative one at that x value.

So you're probably seeing something interesting emerge everywhere. While we’re trying to plot the slope of the tangent line, it seems to coincide with y is equal to cosine of x. And it is indeed the case that the derivative of sine of x is equal to cosine of x. You can see that it makes sense, not just at the points we tried, but even in the trends. If you look at sine of x here, the slope is one, but then it becomes less and less positive all the way until it becomes zero.

Cosine of x, the value of the function is one, and it becomes less and less positive all the way until it equals zero. You could keep doing that type of analysis to feel good about it. In another video, we're going to prove this more rigorously.

So now let's think about cosine of x. Cosine of x right over here, the slope of the tangent line looks like it is zero, and so its derivative function needs to be zero at that point. So hey, maybe it's sine of x. Let's keep trying this.

So over here, cosine of x looks like the slope of the tangent line is negative one, and so we would want the derivative to go through that point right over there. All right, this is starting to seem; it doesn't seem like the derivative of cosine of x could be sine of x. In fact, this is the opposite of what sine of x is doing. Sine of x is at one, not negative one at that point. But that's an interesting theory: maybe the derivative of cosine of x is negative sine of x.

So let's plot that. So this does seem to coincide. The derivative of cosine of x here looks like negative one, the slope of the tangent line, and negative sine of this x value is negative one. Over here, the derivative of cosine of x looks like it is zero, and negative sine of x is indeed zero.

So it actually turns out that it is the case that the derivative of cosine of x is negative sine of x. So these are really good to know. These are kind of fundamental trigonometric derivatives to know. We'll be able to derive other things for them, and hopefully, this video gives you a good intuitive sense of why this is true. In future videos, we will prove it rigorously.

More Articles

View All
What Exactly is the Present?
At the 1939 world’s fair in New York, the exciting new tech was the live television broadcast. Roosevelt became the first president to address the nation live on TV. But for years leading up to this event, engineers have been working on one particular tec…
Origins of agriculture | World History | Khan Academy
This timeline here covers 200,000 years, from 200,000 years into the past to the present. Just to get a sense of the scale of this, if we were to go 2,000 years ago to the time of the Roman Empire, that would be roughly here on the timeline. If I were to …
The Crux Episode 4 | Full Episode | National Geographic
Growing up, I watched the Olympics when they were in Vancouver, and I thought, wow, it would be really cool to be one of those athletes one day. But I never thought it would actually come true. It did on the first Olympics ever, which is like even more sp…
Three ways to end a sentence | Punctuation | Khan Academy
Hello Garans and hello Paige, hi David. So today we’re going to talk about the three different ways to end a sentence. This is what we call a terminal punctuation of English. Um, Paige, what are those three ways? So the first is a period, okay? And then,…
Writing numbers in words and standard form
What we’re going to do in this video is get some practice writing reasonably large numbers in different ways. So, for example, let’s say we had this number, and I’m going to not say it out loud on purpose. So this number right over here, what I want to d…
Passing atmospheric levels of cool 🧑‍🚀🌏 #womeninstem #space
This is how many tampons Sally Ride was offered on her first space mission, which lasted about six days. Like a lot of STEM fields, NASA was male-dominated, and Sally Ride was their first female astronaut. After her death, we learned something very privat…