yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of sin(x) and cos(x) | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What I'd like to do in this video is get an intuitive sense for what the derivative with respect to x of sine of x is and what the derivative with respect to x of cosine of x is. I've graphed y is equal to cosine of x in blue and y is equal to sine of x in red. We're not going to prove what the derivatives are, but we're going to know what they are and get an intuitive sense. In future videos, we'll actually do a proof.

So let's start with sine of x. The derivative can be viewed as the slope of the tangent line. So for example, at this point right over here, it looks like the slope of our tangent line should be zero. So our derivative function should be zero at that x value. Similarly, over here, it looks like the derivative is zero; the slope of the tangent line would be zero. So whatever our derivative function is at that x value, it should be equal to zero.

If we look right over here on sine of x, it looks like the slope of the tangent line would be pretty close to 1. If that is the case, then in our derivative function, when x is equal to 0, that derivative function should be equal to one. Similarly, over here, it looks like the slope of the tangent line is negative one, which tells us that the derivative function should be hitting the value of negative one at that x value.

So you're probably seeing something interesting emerge everywhere. While we’re trying to plot the slope of the tangent line, it seems to coincide with y is equal to cosine of x. And it is indeed the case that the derivative of sine of x is equal to cosine of x. You can see that it makes sense, not just at the points we tried, but even in the trends. If you look at sine of x here, the slope is one, but then it becomes less and less positive all the way until it becomes zero.

Cosine of x, the value of the function is one, and it becomes less and less positive all the way until it equals zero. You could keep doing that type of analysis to feel good about it. In another video, we're going to prove this more rigorously.

So now let's think about cosine of x. Cosine of x right over here, the slope of the tangent line looks like it is zero, and so its derivative function needs to be zero at that point. So hey, maybe it's sine of x. Let's keep trying this.

So over here, cosine of x looks like the slope of the tangent line is negative one, and so we would want the derivative to go through that point right over there. All right, this is starting to seem; it doesn't seem like the derivative of cosine of x could be sine of x. In fact, this is the opposite of what sine of x is doing. Sine of x is at one, not negative one at that point. But that's an interesting theory: maybe the derivative of cosine of x is negative sine of x.

So let's plot that. So this does seem to coincide. The derivative of cosine of x here looks like negative one, the slope of the tangent line, and negative sine of this x value is negative one. Over here, the derivative of cosine of x looks like it is zero, and negative sine of x is indeed zero.

So it actually turns out that it is the case that the derivative of cosine of x is negative sine of x. So these are really good to know. These are kind of fundamental trigonometric derivatives to know. We'll be able to derive other things for them, and hopefully, this video gives you a good intuitive sense of why this is true. In future videos, we will prove it rigorously.

More Articles

View All
Michael Burry's BIG Bet On Inflation (The Big Short 2.0?)
Well, earlier in the week, we did a deep dive into Michael Burry’s put option position against Tesla. But that wasn’t even the biggest takeaway from Cyan Asset Management’s 13F filing this quarter. The most alarming thing you find when you read between th…
Khanmigo safety and privacy for school administrators
Welcome back! I’m Rachel, a professional learning specialist at Khan Academy and a former classroom teacher. In this video, I’m thrilled to tell you more about Conmigo, our cutting-edge AI teaching assistant designed to enrich the learning journey while p…
Ray Dalio: Bearish On Bitcoin, But Still Buys
Well, you thought that I was done talking about Ray Dalio? No way! Because, interestingly, while most of his interviews at the moment talk about macroeconomics and investing in China and so on, I was very surprised to hear him bring up the fact that he ha…
The Absurdity of Detecting Gravitational Waves
1.3 billion years ago in a galaxy far, far away, two black holes merged. As they violently spiraled into each other, they created traveling distortions in the fabric of space-time: gravitational waves. In the last tenth of a second, the energy released in…
The 5 personality traits of Self-Made Millionaires
What’s up, you guys? It’s Graham here. So, let’s face it, there are enough videos already out there showing you how to make a million dollars. Theoretically, if everyone just stuck to the same advice strategically, pretty much you can guarantee you’ll be …
Tailgate Like a Pro: Party Foods That'll Score Big Time! | Chef Wonderful
We’ve got over 50 people coming, a lot of friends and family coming over here, and we want to be ready for the election. [Applause] Oh my goodness! Chef Wonderful here! Can’t believe where I am, Los Angeles, that’s right! And who’s this? Yes, the celebrit…