yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of sin(x) and cos(x) | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What I'd like to do in this video is get an intuitive sense for what the derivative with respect to x of sine of x is and what the derivative with respect to x of cosine of x is. I've graphed y is equal to cosine of x in blue and y is equal to sine of x in red. We're not going to prove what the derivatives are, but we're going to know what they are and get an intuitive sense. In future videos, we'll actually do a proof.

So let's start with sine of x. The derivative can be viewed as the slope of the tangent line. So for example, at this point right over here, it looks like the slope of our tangent line should be zero. So our derivative function should be zero at that x value. Similarly, over here, it looks like the derivative is zero; the slope of the tangent line would be zero. So whatever our derivative function is at that x value, it should be equal to zero.

If we look right over here on sine of x, it looks like the slope of the tangent line would be pretty close to 1. If that is the case, then in our derivative function, when x is equal to 0, that derivative function should be equal to one. Similarly, over here, it looks like the slope of the tangent line is negative one, which tells us that the derivative function should be hitting the value of negative one at that x value.

So you're probably seeing something interesting emerge everywhere. While we’re trying to plot the slope of the tangent line, it seems to coincide with y is equal to cosine of x. And it is indeed the case that the derivative of sine of x is equal to cosine of x. You can see that it makes sense, not just at the points we tried, but even in the trends. If you look at sine of x here, the slope is one, but then it becomes less and less positive all the way until it becomes zero.

Cosine of x, the value of the function is one, and it becomes less and less positive all the way until it equals zero. You could keep doing that type of analysis to feel good about it. In another video, we're going to prove this more rigorously.

So now let's think about cosine of x. Cosine of x right over here, the slope of the tangent line looks like it is zero, and so its derivative function needs to be zero at that point. So hey, maybe it's sine of x. Let's keep trying this.

So over here, cosine of x looks like the slope of the tangent line is negative one, and so we would want the derivative to go through that point right over there. All right, this is starting to seem; it doesn't seem like the derivative of cosine of x could be sine of x. In fact, this is the opposite of what sine of x is doing. Sine of x is at one, not negative one at that point. But that's an interesting theory: maybe the derivative of cosine of x is negative sine of x.

So let's plot that. So this does seem to coincide. The derivative of cosine of x here looks like negative one, the slope of the tangent line, and negative sine of this x value is negative one. Over here, the derivative of cosine of x looks like it is zero, and negative sine of x is indeed zero.

So it actually turns out that it is the case that the derivative of cosine of x is negative sine of x. So these are really good to know. These are kind of fundamental trigonometric derivatives to know. We'll be able to derive other things for them, and hopefully, this video gives you a good intuitive sense of why this is true. In future videos, we will prove it rigorously.

More Articles

View All
Horizontal & vertical lines | Mathematics I | High School Math | Khan Academy
What is the equation of the horizontal line through the point (-4, 6)? So, let’s just visualize this. Once you get the hang of it, you might not have to draw a graph, but for explanatory purposes, it might be useful. So, (-4, 6), so that’s going to be i…
Millionaire Exposes The Jake Paul Financial Freedom Scam
What’s up you guys? It’s Graham here. So let me start by asking you three very important questions. Number one, have you ever dreamed of being a millionaire? Number two, have you ever wanted to be financially free? And most importantly, number three, have…
#shorts How Will Robots Affect These Jobs?
Robots don’t pay taxes or even spend money in the local communities. They should preserve their jobs. My question to you is, can they stop progress? Uh, first of all, there’s no evidence that that’s true. There have been lots of studies on automation in …
Ask me anything with Sal Khan: April 15 | Homeroom with Sal
Welcome to the Khan Academy daily homeroom. This is a way that we’re trying to stay in touch and help support parents, teachers, and students as we go through this school closure situation. Many of y’all know Khan Academy; we’re a not-for-profit with a mi…
How Close Are We to Flying Cars? | How Sci-Fi Inspired Science
You’re stuck on the highway, bumper-to-bumper traffic. A commute that should have taken a few minutes has now somehow become an hour-long endeavor. And this happens. We all have one of two thoughts: one, monster truck; or two, wish I could just fly over t…
Mendelian inheritance and Punnett squares | High school biology | Khan Academy
[Narrator] This is a photo of Gregor Mendel, who is often known as the father of genetics. And we’ll see in a few seconds why, and he was an Abbot of a monastery in Moravia, which is in modern day Czech Republic. And many people had bred plants for agr…