yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
Adorable Lemurs Roam Free on This Ancient Island | Short Film Showcase
Nita Terrace Helen Mirren Gandhi, I reckon if Allah to a new litter one potato atlatl. [Music] Kylie, the hero and the Monocacy lying in a field known lon Kenan rotten Atlanta kinds of top Caselli. They would do to flank the chopper; that’ll do it in th…
Life After Black Hawk Down | No Man Left Behind
I was the pilot in command of Super 64, which is one of the Blackhawks, and I was actually leading an element of aircraft. That means my responsibility is to fly, in this case, four aircraft into the target area and put troops on the ground. The mission i…
How To Be The Next Elon Musk According To Elon Musk
So, uh, one of the, I think, most common questions I hear young people, ambitious young people, ask is: “I want to be the next Elon Musk. How do I do that?” Um, obviously, the next Elon Musk will work on very different things than you did. But what have …
The Middle colonies | Period 2: 1607-1754 | AP US History | Khan Academy
Over the course of the 1600s, the English continued to settle along the eastern seaboard of North America. Now, we’ve already talked about the settlements at Virginia and those of Massachusetts, and a little bit about the settlement of New York, which was…
The Truth About Y Combinator
I love, I love the like, well, I’ve watched all your videos, so we kind of get YC. It’s like, guys, these videos aren’t YC. Like, yes. [Music] So, this is Michael Cybo with Dalton Caldwell, and today we just finished up, um, a YC batch, and we’re getting …
Make Chris Brown CRY! (Interactive)
[Music] Hey, thank you, thank you, thank you, everybody! Oh, thank you! How’s it going, guys? I apologize that the video quality isn’t better. I’m actually broadcasting from Kansas right now, which is where I grew up. I’ve been celebrating the fourth with…