yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
Rewriting before integrating | AP Calculus AB | Khan Academy
Let’s say that we wanted to take the indefinite integral of ( x^2 \times (3x - 1) \, dx ). Pause this video and see if you can evaluate this. So you might be saying, “Oh, what kind of fancy technique could I use?” But you will see sometimes the fanciest …
Peter Lynch: Buy These 5 Types of Stocks (Rare Clip)
When most people think about investing in stock market, they dream about investing in a fast grower. A company that is growing at over 25 percent a year—at 25 a year a company’s profits will double in three, they quadruple in six, and up eightfold in nine…
What 300 DIRTY JOBS Taught Mike Rowe About TRUE SUCCESS | Kevin O'Leary
If I were in a seat, I’d be on the edge of it. All right, here we go. [Music] You are watching yet another episode of Mr. Wonderful. I’m not him; I’m just a guest. I might grow your questions; we answer them. It’s gonna be great. Hi, my name is Monty. I’…
Fishing Tips: How to Rig a Harpoon | Wicked Tuna: Outer Banks
[Applause] [Music] Captain TJ out of the Hot Tuna, and today I’m going to show you how we like to rig our harpoons and board the Hot Tuna. So what we have here is an 8ft scourge of the sea harpoon, our Lily dart on the end here. What I like to do is tak…
The U.S. Faces a Major Debt Problem
I just got off the phone with the president. I talked to him twice today, and after weeks of negotiations, we have come to an agreement in principle. This is House Speaker Kevin McCarthy explaining to the media that finally the Republicans and the Democra…
Anthony Mackie Descends a Cliff Face | Running Wild with Bear Grylls
[dramatic music] BEAR GRYLLS: Anthony Mackie and I are high in the Dolomite Mountains of Italy. Doing a great job, Anthony, well done. We’re using an old hemp rope, just like soldiers would use in World War I, to descend the sheer rock face. It’s about no…