yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
Can YOU Fix Climate Change?
Never before in human history have we been richer, more advanced or powerful. And yet we feel overwhelmed in the face of rapid climate change. It seems simple on the surface. Greenhouse gases trap energy from the Sun and transfer it to our atmosphere. Thi…
Dangling modifiers | Syntax | Khan Academy
Hello Garans, hello Rosie, hi Paige. So in this video, we’re going to talk about something called a dangling modifier. So before we get into what a dangling modifier is, we can sort of talk about just what a modifier is. Rosie, do you want to tell us wha…
Setting AI Policies for your School Districts: Part 2 of 2
So hello everyone. I’m Kristen Desero. I’m the Chief Learning Officer at KH Academy, and I’m going to, uh, let our two other panelists do quick introductions of themselves, and then we’ll get into discussions. Chris, you want to start first? Sure, I’m Ch…
Three ways to end a sentence | Punctuation | Khan Academy
Hello Garans and hello Paige, hi David. So today we’re going to talk about the three different ways to end a sentence. This is what we call a terminal punctuation of English. Um, Paige, what are those three ways? So the first is a period, okay? And then,…
Find Your Bliss in Patagonia | National Geographic
Every year, about 100,000 visitors head to a remote location known as the end of the world: it’s Torres del Paine National Park in Chile’s Patagonia region. Here, adventurers find bliss amongst the dramatic terrain that includes glaciers, fjords, and moun…
Philosophy For A Quiet Mind
Who doesn’t want a quiet mind? I think most people do, although many don’t even realize it. It’s the reason we drink, smoke a joint, binge-watch series on Netflix, and check our smartphones. We want an escape from our overencumbered minds that torment us …