yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
Europe's Largest Gothic Palace Was Once Home to Popes | National Geographic
Located on the sunny south of France, picturesque Avignon was once the seat of power for the Catholic Church. The historic center of Avignon is known for its architectural and cultural significance, both of which largely stem from its brief stint as a sea…
Billionaire Warren Buffett: HOW to calculate the INTRINSIC VALUE of a STOCK
Actually, it’s very simple. The first investment primer—when would you guess it was written? The first investment primer that I know of, and it was pretty good advice, was delivered in about 600 BC by Aesop. And Aesop, you’ll remember, said, “A bird in th…
Buddhism | World History | Khan Academy
We’re now going to talk about one of the most significant figures in all of human history, and that is Sedara Gotha, who would later be known as Buddha, as the Awakened One or the Enlightened One. Now, before we get into his life, let’s think about the co…
Geometric constructions: parallel line | Congruence | High school geometry | Khan Academy
Let’s say that we have a line. I’m drawing it right over there, and our goal is to construct another line that is parallel to this line that goes through this point. How would we do that? Well, the way that we can approach it is by creating what will even…
Super Reefs (Short Film) | Pristine Seas | National Geographic Society
Thank you. Can you see that sunrise? [Music] Foreign. [Music] Ly powerful memory, vivid memory, memory of the most beautiful and healthy pristine coral reef. Foreign. That, you know, it took a year to prepare for this expedition, but actually, it’s tak…
15 Biggest Obstacles You'll Have in Your Life
Hey there, Alaer! Welcome back. Today’s chat is a little bit longer than usual because we really wanted to do all of these obstacles justice. You might not face every one of them in your life; we certainly hope not, but chances are you faced some of these…