yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
Alcohol 101 | National Geographic
[Music] Alcohol has been a component of human culture for thousands of years. From its prehistoric inception to its many uses in modern times, alcohol has had countless effects on our cultures and our lives. Throughout the course of human history, alcohol…
10 Life Changes With Immediate Impact
Aluxer, do you know that you’re just a few changes away from completely improving your whole life? These are some of the changes that we implemented, and they had immediate results. It worked for us and will most likely work for you as well. Welcome to a …
Expanding a Cabin in the Arctic | Life Below Zero
Nothing’s going to stop me. Snow, wind, 40 below, things like that don’t stop me. [Music] Couldn’t be any better time to finish this up. Dogs are all resting. Well, now it’s time to keep after it. I don’t want to leave this undone and wait because this is…
Shoguns, samurai and the Japanese Middle Ages | World History | Khan Academy
As we get into the late Heian period, you start to have the emergence of an increasingly powerful warrior class. All of that comes to a head in the year 1185 when the Heian period ends, and a general by the name of Minamoto Yoritomo comes to power. What’s…
Curvature formula, part 5
So let’s sum up where we are so far. We’re looking at this formula and trying to understand why it corresponds to curvature, why it tells you how much a curve actually curves. The first thing we did is we noticed that this numerator corresponds to a cert…
Missing numbers in addition and subtraction | 2nd grade | Khan Academy
Let’s say someone walks up to you on the street and says, “Quick! “73 plus blank is equal to 57.” What would blank be? Well, there’s a couple of ways to think about it. Blank is essentially what you have to add to 57 to get to 73. It’s the difference be…