yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
A Pitbull Becomes a Service Dog | Cesar Millan: Better Human Better Dog
For the past five years, Johns faced a brain tumor in the fight of his life. His weakened state has caused Goliath to become fixated on protecting him. Today, Goliath faces Caesar’s final challenge, which will determine if he’s balanced enough to be of se…
Picking hyperbola equation
So, we’re asked to choose the equation that can represent the hyperbola graphed below. This is the hyperbola graphed in blue, and I encourage you to pause the video and figure out which of these equations are represented by the graph here. All right, let…
Analyzing functions for discontinuities (continuous example) | AP Calculus AB | Khan Academy
So we have ( g(x) ) being defined as the log of ( 3x ) when ( 0 < x < 3 ) and ( 4 - x ) times the log of ( 9 ) when ( x \geq 3 ). So based on this definition of ( g(x) ), we want to find the limit of ( g(x) ) as ( x ) approaches ( 3 ). Once again, …
Bringing the Meat to Higher Ground | The Great Human Race
Can’t be too greedy right now. In the midday heat of East Africa, lions often retreat to the shade and return to their kill when the sun starts to set. This lion’s gonna come back. I wish we could take the height and everything else. I can’t get it all…
What is Khanmigo moderation? | Introducing Khanmigo | Khanmigo for students | Khan Academy
In this video, we’re going to see how Kigo can sometimes moderate the conversation in an attempt to protect you, the user. Sometimes it gets it right, but sometimes it gets it wrong. What do we do in those situations? So, let’s say we want to write a fan…
IMPOSSIBLE Waterfall!: Mind Blow 11
[Music] A new toilet that can flush golf balls, and Natalie Portman’s real name is Natalie Hlag. Jackie Chan is Kung Chan, and don’t call me Carlos Ray or I’ll stick my boot up your. Vsauce! Kevin here. This is M. Blow things are not always what they see…