yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
The Mummification of Seti I | Ultimate Treasure Countdown
[music playing] NARRATOR: Seti the First was the father of our friend Ramesses the Great. Just like his son, he was a hugely successful pharaoh. But in father-son rivalry, there’s one category where he wins hands down: his mummy. Because Seti the First b…
Inside the Elite Meeting Spots for Billion-Dollar Decisions
A new world order, the great reset, globalism, universal basic income, fake news, and media manipulation, and piles of cash to make it all happen. This is what the average conspiracy theorist imagines when they think about Davos, the Bilderberg Group, or …
TAOISM | 5 Life Lessons From Lao Tzu
Can you celebrate life and not cling to it? Can you give up control and still get things done? Can you achieve your goals without forcing? These are all themes we find in the ancient Taoist key work called the Tao Te Ching, which was written by a mysterio…
Constructing exponential models | Mathematics II | High School Math | Khan Academy
Derek sent a chain letter to his friends, asking them to forward the letter to more friends. The group of people who receive the email gains 910 of its size every 3 weeks and can be modeled by a function P, which depends on the amount of time T in weeks. …
Warren Buffett Just Made a Huge $6.7B Investment.
Over the past few months, Warren Buffett has been hiding something: a secret stock, a secret position that was deliberately not disclosed to the public in his periodic 13F filings. And the SEC let him do it. They gave Buffett permission to buy up a stock …
Why you should actually read the URL & be careful with free Wi-Fi
So Kelly, you’ve convinced me that I should be wary as I browse the internet. What should I be doing to make sure that I can leverage the internet but not get into trouble? Well, I think it all starts with where you’re connecting to the internet. So firs…