yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
Who is eligible for naturalization? | Citizenship | High school civics | Khan Academy
In this video, we’re going to cover what criteria a non-citizen must meet to become a citizen, a process we call naturalization. Some of the requirements are obvious and verifiable, while others are tested through the naturalization process. There are nin…
The Fourth Amendment | Civil liberties and civil rights | US government and civics | Khan Academy
Hey, this is Kim from Khan Academy, and today I’m talking with some experts about the 4th Amendment. This is the 4th Amendment of the Bill of Rights, and the 4th Amendment deals with unreasonable search and seizure. So, here’s the official text of the am…
WHICH PLAYER SHOULD I CHANGE? | Maresca hits back at calls for more Chelsea substitutes
Must proved a very frustrating end to the afternoon for you, and what does it tell you about your Chelsea team? No, yeah, as I said, I just said that probably we did enough to win the game today. Between the first half and second half, I think we created…
Differentiating polynomials example | Derivative rules | AP Calculus AB | Khan Academy
So I have the function f of X here, and we’re defining it using a polynomial expression. What I would like to do here is take the derivative of our function, which is essentially going to make us take a derivative of this polynomial expression, and we’re …
Supervenience
One of the questions was, “Um, how is it that logic supervenes on our brains?” And I think it’s a good question. Um, I think it’s a question that we’re not currently in a position to give a full answer to. Um, for that, our understanding of how the bra…
Worked examples: finite geometric series | High School Math | Khan Academy
So we’re asked to find the sum of the first 50 terms of this series, and you might immediately recognize that it is a geometric series. When we go from one term to the next, what are we doing? Well, we’re multiplying by ( \frac{10}{11} ). To go from 1 to …