yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
Place value blocks | Math | 4th grade | Khan Academy
What number is shown by the place value blocks? So here we have several sets of place value blocks, some with many, many, many blocks, and some with just single blocks stacked on top of each other. We want to know what number is represented by all of the…
A Tale of Two Credit Scores | Teacher Resources | Financial Literacy | Khan Academy
[Music] Con Academy proudly presents a tale of two credit scores. This is Jana. Hi! And this is Bob. Good morning! Narrator: Hi Bob! These two charming characters are co-workers, each with the same job and salary. They both need a vehicle, so they’ve tr…
WHAT'S A DONG?
Hey, Vsauce. Michael here, next to a giant bird, which can only mean one thing. I’m in London, where even the pillows say “God save the Queen.” It’s a cushion, Michael. Alright, look. I’ve got a bird trying to tell me what to say. That’s right, in Englan…
Worked example: Inflection points from second derivative | AP Calculus AB | Khan Academy
Let G be a twice differentiable function defined over the closed interval from -7 to 7, so it includes those end points of the interval. This is the graph of its second derivative G prime prime. So that’s the graph right over there: Y is equal to G prime …
Warren Buffett is GETTING OUT!
Hey guys, welcome back to the channel! In this video, we’re going to be looking at everything that Warren Buffett bought and sold in the last quarter. Of course, the 13F’s are out, so now we actually get to have a look at all of the stock market moves tha…
Crisis | Vocabulary | Khan Academy
Wordsmiths, we’re in it now, you and I. The situation has become very serious. You might even say it’s a crisis. Yes, crisis is the word we’re going to be looking at in this video. Crisis, it’s a noun. It means a tipping point, a very dangerous period or …