yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
Sailing through the Ice Gauntlet: The Maze of Icebergs | Explorer: Lost in the Arctic
This was a town. Some kind of a whaling station. Totally abandoned now. Look at this. This is what I’ve been looking for right here. An iron bollard in the shore, where Franklin tied up their ships. And this was the last anchorage for the Franklin expedit…
Initial value & common ratio of exponential functions | High School Math | Khan Academy
So let’s think about a function. I’ll just give an example: let’s say h of n is equal to ( \frac{1}{14} \times 2^n ). So first of all, you might notice something interesting here: we have the variable, the input into our function, it’s in the exponent. A…
How does minimum wage hurt workers? (again)
After watching Edgar the Exploiter, some people still don’t follow exactly why we should suppose that raising or introducing the minimum wage will result in a greater number of workers judged to be capable of only low productivity by their employers end u…
Limits from tables for oscillating functions
The function h is defined over the real numbers. This table gives a few values of h. So they give us for different x values what is the value of h of x. What is a reasonable estimate for the limit of h of x as x approaches one? So with the table, we can …
Westworld , Ford about God and existence. [S02E07]
[Music] To see the world, rain of sand. Heaven in a wild flower. Hold infinity in the palm of your hand and eternity in an hour. [Music] Robert: How are you alive? Bernard: Well, you’ve seen the company’s little undertaking. Do you think James Dallas wo…
Kieran Snyder of Textio at the Seattle Female Founders Conference
To our next speaker, Sharon Schneider, who is the founder and CEO of Textio. Oh, so I actually started hearing about Textio last year from a number of YC alumni who used and loved Textio. They use Textio to analyze their job postings. So, Textio is used …