yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
Safari Live - Day 222 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. This is why the inclusion of McBride is such a firm favorite. [Music] It just looks ready for a fight; this is still her ter…
Welcome to Twinsburg: Home of the World’s Largest Twin Festival | Short Film Showcase
A mirror image, so I was like, “Here, he a million,” and I have in the equity at the exact time and freckles. But he’s right-handed or left-handed, so mirror image. And was Millersville originally, and then Aaron and Moses were twins, and they donated fou…
Americans Are Spending Like There's No Tomorrow..
What’s up you guys, it’s Graham here, and this is getting out of hand. According to the Wall Street Journal, Americans are still spending like there’s no tomorrow, with the average consumer splurging on events, concerts, vacations, and experiences, all wh…
Proportionality constant from table
[Instructor] We’re told the quantities x and y are proportional, and then they give us a table where they give us a bunch of x’s and they give us the corresponding y’s. When x is four, y is 10. When x is five, y is 12.5, and so on and so forth. Find th…
Volumes of cones intuition | Solid geometry | High school geometry | Khan Academy
So I have two different three-dimensional figures here. I have a pyramid here on the left, and I have a cone here on the right. We know a few things about these two figures. First of all, they have the exact same height. So this length right over here is…
Fossils | Evolution | Middle school biology | Khan Academy
[Narrator] When I was 12 years old, I went on vacation to Alaska with my family. While walking down one of the cold stone covered beaches, I spotted a large pile of rocks that seemed to have slid off the side of one of the hills that connected to the shor…