yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
How to Analyze a Cash Flow Statement Like a Hedge Fund Analyst
There’s an old saying: cash is king. However, when it comes to investing, cash flow is king. In this video, we are going to go over how to analyze a company’s cash flow statement. I’m going to draw upon my experience as an investment analyst at a large in…
TAOISM | The Power of Letting Go
Mastery of the world is achieved by letting things take their natural course. You can not master the world by changing the natural way. Lao Tzu Our civilization is in a state of ongoing strivings, in which control seems to be the highest virtue. We don’…
Can You Picture That? This Photographer Can and Does | Podcast | Overheard at National Geographic
Foreign [Music] November 2nd, and I am getting into my Tyvek suit. So, because bats carry diseases that we don’t know about, we have to wear PPE. And we all know about PPE because of COVID. So that’s Mark Thiessen. He’s a staff photographer for National G…
Jesus Christ and Christianity | World History | Khan Academy
We’re now going to talk about the beginnings of one of the most important religions in human history, and even today the largest religion on earth, and that of course is Christianity. The central figure in Christianity is Jesus Christ, and the term “Chris…
Using context clues to figure out new words | Reading | Khan Academy
Hello readers! You know that feeling when you’re reading and you see a word you’ve never seen before and you don’t really know how to figure out what it means? Well, that’s what we’re talking about today: strategies for figuring out new words through cont…
The 5 Investing Strategies to make the MOST Money
What’s up, you guys? It’s Graham here. So I think it’s pretty obvious if you invest your money, you want to make as much money back as you possibly can. Because there’s so many different ways to invest, I want to focus on the most important points that ar…