yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
Design for Startups by Garry Tan (Part 2)
Now’s the super practical section of how to find and choose designers. We can get through this really quickly. Happy to answer questions afterwards about it, but you know the basic questions we always get asked is, you know, well when, when and how. The r…
Determining sample size based on confidence and margin of error | AP Statistics | Khan Academy
We’re told Della wants to make a one-sample z-interval to estimate what proportion of her community members favor a tax increase for more local school funding. She wants her margin of error to be no more than plus or minus two percent at the 95% confidenc…
Mad Brad | Wicked Tuna
All right, we’re going to haul up now and come in. Weird fishing, there’s fish around. There’s a couple bites; you don’t mark that many. It’s just very strange. There’s a ton of boats out here; everybody’s trying to get their last licks in before the end …
How Much You Need To Invest By EVERY Age
What’s up you guys, it’s Graham here. So, I know I can’t be the only one who does this, but have you ever wondered how much does the average person have saved and invested by every age? Or what about how much income does it take to rank within the top one…
DON'T SHOOT THE PUPPY!! .... and more: DONG #23
Hey, Vsauce. Michael here. And the Internet is a big place. So, let’s take a safari through the World Wide Web and find some cool things to do online now, guys. Size it up with iruler.net. This website detects your monitor size and resolution and render…
A Gun Seizure at Miami International Airport | To Catch a Smuggler
[music playing] OFFICER HERNANDEZ: We’re going to have to take this back to the office. Yeah. That box will not be going to its final destination. I appreciate you carrying the heavy stuff. OFFICER HERNANDEZ: So when it comes to firearms in particular, …