yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
Reimagining Dinosaurs | National Geographic
Hello, um, thank you all, uh, so much for um watching this live stream. My name is Michael Greshko. I’m a science writer at National Geographic and the author of the October 2020 cover story, Reimagining Dinosaurs, uh, to talk with us about the latest adv…
Pigs Communicate With Humans in New Experiment | National Geographic
Similar to dogs, pigs are highly susceptible to training due to their social temperament. But little is known about how pigs communicate with humans. In a new study, researchers at Atlas LaRon University in Budapest looked at how highly socialized young p…
The Kangaroo is the World's Largest Hopping Animal | National Geographic
[Music] The kangaroo, one of Australia’s most recognizable marsupials. There are a handful of species found all over the country, from the antillipine kangaroo in the far northern reaches to the aptly named eastern gray. The only large animal to hop as a…
The Most Efficient Way to Destroy the Universe – False Vacuum
What if our universe comes with a self-destruct button to eliminate itself so cleanly and efficiently, that every single physical thing would just stop existing and life would be impossible forever? The ultimate ecological catastrophe - vacuum decay. (The…
Showing segment congruence equivalent to having same length
In this video, we’re going to talk a little bit about segment congruence and what we have here. Let’s call this statement one. This is the definition of line segment congruence, or at least the one that we will use. Two segments are congruent; that means …
Relationships between scientific ideas in a text | Reading | Khan Academy
Hello readers, this is Professor Mario Molina, a scientist who won the Nobel Prize for Chemistry. Now, I’m going to use the example of Professor Molina to teach us about connections, or drawing connections between scientific information in a text, in a pi…