yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determinant when multiplying a matrix by a constant


2m read
·Nov 11, 2024

So let's say that I have matrix A and its elements, it's a 2x2: a, b, c, d. We have a lot of practice taking determinants of matrices like this. The determinant of this matrix, same thing as the determinant of a, b, c, d, it's going to be equal to a times d, a d, minus b times c.

Now, what would happen if we multiply one row of this matrix by a constant? What would happen to its determinant? Well, let's try it out. So you have your original, the determinant of your original matrix a, b, c, d. I'm just rewriting what I just did up here: that's a d minus b c.

Now, if I were to multiply, let's say, this first row by a constant k, how would that change the determinant? Well, instead of this being just an a, this is now a k a. Instead of this being just a b, it is now a k b. And so this is equal to k times a d minus b c, which is the same thing as it's equal to k times our original determinant of our matrix A.

So that seems pretty interesting, and I encourage you to see that if you, instead of doing the first row, you did the second row, you would have gotten the same outcome. And then you can also verify that look, if I multiply both of these rows by that constant k, how would that change things? Well then, I'm going to have k a times k d, so you're going to have a k squeezed in there, and then you're going to have k b times k c.

And so this would actually be, you could factor out a k squared, and so this is going to be k squared times the determinant of A. And that can be extended to a generalized property that if I have some n by n matrix A, then the determinant, the determinant of k times that n by n matrix A, the determinant of this, when I multiply a constant times an entire matrix, I'm multiplying that constant times all the rows, you could say all of the elements.

Well, this is going to be equal to... pause this video, see if you can intuit what this general formula is going to be. You might be tempted to say it's k times the determinant of A, but remember that's only if I multiply one row by k. But if I multiply the entire matrix by k, well then this determinant is going to be the constant k to the nth power times the determinant of our n by n matrix A.

And you could see this play out in a three by three case. In fact, I encourage you to try it out with some three by threes, and you could also do a generalized proof for an n by n case. But I won't do that now; this is really just to give you the idea.

More Articles

View All
LearnStorm Growth Mindset: Dr. Michael Merzenich on growing your brain
But we’ve actually trained athletes, you could say, on the sort of academic side of training you would not necessarily imagine. And guess what? It improves our performance on the field. What’s happening for a couple of reasons. One reason is that you’re …
How Does The Earth Spin?
[Music] If I, uh, apply a force to the globe, I can actually get it spinning in roughly the same way that the Earth spins. But it is tricky. There’s very little friction on the bottom because of it being supported on this thin layer of water. You can see …
Homeroom with Sal & Marta Kosarchyn - Tuesday, June 30
To our daily homeroom live stream, I’m excited about our conversation today with Khan Academy’s Head of Engineering, VP of Engineering, Marta Casarchin. Uh, but before we get into that, I will give my standard announcement. A reminder to everyone that Kh…
Bitcoin To $1,000,000 | Meet Kevin Pt 2
Gary Gensler, a few weeks ago, compared regulation in the cryptocurrency market to regulation in cars. When we finally had cars get regulated, we had stop signs, we had crosswalks, and traffic lights. Car adoption skyrocketed. Do you think the same thing …
Y Combinator Partners Q&A
I’m Cat Manik. I’m a partner at Y Combinator, and honestly, one of my favorite parts, one of the best parts of working at Y Combinator, is getting to work with the other partners. So, I’m really pleased right now to invite them all on stage. We’re going t…
Lagrange multiplier example, part 1
So let’s say you’re running some kind of company, and you guys produce widgets. You produce some little trinket that people enjoy buying. The main costs that you have are labor—you know, the workers that you have creating these—and steel. Let’s just say …