yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Product rule example


3m read
·Nov 11, 2024

So let's see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it.

So when you look at this, you might say, "Well, I know how to find the derivative with respect to ( e^x ). That's, in fact, just ( e^x )." And let me write this down. We know a few things. We know the derivative with respect to ( x ) of ( e^x ). ( e^x ) is ( e^x ). We know how to find the derivative of ( \cos(x) ). The derivative with respect to ( x ) of ( \cos(x) ) is equal to ( -\sin(x) ).

But how do we find the derivative of their product? Well, as you can imagine, this might involve the product rule. Let me just write down the product rule generally first. So if we take the derivative with respect to ( x ) of the first expression in terms of ( x ), so this is—we could call this ( U(x) )—times another expression that involves ( x ), so ( U \cdot V(x) ). This is going to be equal to—and I'm color coding it so we can really keep track of things—this is going to be equal to the derivative of the first expression.

So I could write that as ( U' ) of ( x ) times just the second expression—not the derivative of just the second expression—so times ( V(x) ), and then we have plus the first expression—not its derivative—just the first expression, ( U(x) ), times the derivative of the second expression. So the derivative of the second expression.

So what you remember is you have to do these two things here. You're going to end up with two different terms, and each of them you're going to take the derivative of one of them but not the other one. And then the other one, you'll take the derivative of the other one but not the first one. So ( U' ) derivative of ( U ) times ( V ) is ( U' \cdot V + U \cdot V' ).

Now when you just look at it like that, it seems a little bit abstract, and that might even be a little confusing. But that's why we have a tangible example here. I color-coded it intentionally so we can say that ( U(x) = e^x ) and ( V(x) = \cos(x) ). So ( V(x) = \cos(x) ), and if ( U(x) = e^x ), we know that the derivative of that with respect to ( x ) is still ( e^x ). That's one of the most magical things in mathematics—one of the things that makes it special.

So ( U' ) of ( x ) is still equal to ( e^x ), and ( V' ) of ( x ); ( V' ) of ( x ) we know is ( -\sin(x) ). So what's this going to be equal to? This is going to be equal to the derivative of the first expression, so the derivative of ( e^x ), which is just ( e^x ), times the second expression—not taking its derivative—so times ( \cos(x) ), plus the first expression—not taking its derivative—so ( e^x ) times the derivative of the second expression, so times the derivative of ( \cos(x) ), which is ( -\sin(x) ).

And it might be a little bit confusing because ( e^x ) is its own derivative, but this right over here you can view this as the derivative of ( e^x ), which happens to be ( e^x ). That's what's exciting about that expression or that function. And then this is just ( e^x ) without taking the derivative, of course the same thing.

But anyway, well, now we can just simplify it. This is going to be equal to—we could write this either as ( e^x \cdot \cos(x) - e^x \cdot \sin(x) ). Or if you want, you could factor out an ( e^x ). This is the same thing as ( e^x \cdot (\cos(x) - \sin(x)) ).

So hopefully this makes the product rule a little bit more tangible, and once you have this in your tool belt, there's a whole broader class of functions and expressions that we can start to differentiate.

More Articles

View All
REVEALING MY NEW LAS VEGAS HOME TOUR | LEAVING CALIFORNIA
What’s up you guys, it’s Graham here. So last week, I posted a video explaining why I’m leaving California, and since then, so many of you guys have been asking for a home tour. So here we go, it’s officially official! Welcome to the brand new house all t…
AI and bad math
What we’re going to see in this video is that the current versions of artificial intelligence are not always perfect at math, and we’re going to test this out. I created a simple math tutor on Chat GPT here, and what we’re going to do is see if it can hel…
Safari Live - Day 384 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Well, we couldn’t have asked for a better way to start our Sunday than the brand-new “Oh balls of fluff” for the Inkuhuma p…
There Are No Get Rich Quick Schemes
We skipped one tweet because I wanted to cover all of the tweets on the topic of the long term. The tweet that we skipped was, “There are no get-rich-quick schemes; that’s just someone else getting rich off you.” This goes back to the world being an effi…
Period of a Pendulum | Simple harmonic motion and rotational motion | AP Physics 1 | Khan Academy
So a simple pendulum is just a mass hanging from a string, and if you were to pull this mass—sometimes it’s called a pendulum bob—if you were to pull it back and then let go, gravity would act as a restoring force, and this mass would swing back and forth…
How to Analyze an Annual Report (10-K) Like a Hedge Fund Analyst
Legendary investor Warren Buffett has said in countless interviews that being able to analyze a company’s annual report is foundational for successful investing. In this video, we are going to go over how to analyze a company’s annual report, also referre…