yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Product rule example


3m read
·Nov 11, 2024

So let's see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it.

So when you look at this, you might say, "Well, I know how to find the derivative with respect to ( e^x ). That's, in fact, just ( e^x )." And let me write this down. We know a few things. We know the derivative with respect to ( x ) of ( e^x ). ( e^x ) is ( e^x ). We know how to find the derivative of ( \cos(x) ). The derivative with respect to ( x ) of ( \cos(x) ) is equal to ( -\sin(x) ).

But how do we find the derivative of their product? Well, as you can imagine, this might involve the product rule. Let me just write down the product rule generally first. So if we take the derivative with respect to ( x ) of the first expression in terms of ( x ), so this is—we could call this ( U(x) )—times another expression that involves ( x ), so ( U \cdot V(x) ). This is going to be equal to—and I'm color coding it so we can really keep track of things—this is going to be equal to the derivative of the first expression.

So I could write that as ( U' ) of ( x ) times just the second expression—not the derivative of just the second expression—so times ( V(x) ), and then we have plus the first expression—not its derivative—just the first expression, ( U(x) ), times the derivative of the second expression. So the derivative of the second expression.

So what you remember is you have to do these two things here. You're going to end up with two different terms, and each of them you're going to take the derivative of one of them but not the other one. And then the other one, you'll take the derivative of the other one but not the first one. So ( U' ) derivative of ( U ) times ( V ) is ( U' \cdot V + U \cdot V' ).

Now when you just look at it like that, it seems a little bit abstract, and that might even be a little confusing. But that's why we have a tangible example here. I color-coded it intentionally so we can say that ( U(x) = e^x ) and ( V(x) = \cos(x) ). So ( V(x) = \cos(x) ), and if ( U(x) = e^x ), we know that the derivative of that with respect to ( x ) is still ( e^x ). That's one of the most magical things in mathematics—one of the things that makes it special.

So ( U' ) of ( x ) is still equal to ( e^x ), and ( V' ) of ( x ); ( V' ) of ( x ) we know is ( -\sin(x) ). So what's this going to be equal to? This is going to be equal to the derivative of the first expression, so the derivative of ( e^x ), which is just ( e^x ), times the second expression—not taking its derivative—so times ( \cos(x) ), plus the first expression—not taking its derivative—so ( e^x ) times the derivative of the second expression, so times the derivative of ( \cos(x) ), which is ( -\sin(x) ).

And it might be a little bit confusing because ( e^x ) is its own derivative, but this right over here you can view this as the derivative of ( e^x ), which happens to be ( e^x ). That's what's exciting about that expression or that function. And then this is just ( e^x ) without taking the derivative, of course the same thing.

But anyway, well, now we can just simplify it. This is going to be equal to—we could write this either as ( e^x \cdot \cos(x) - e^x \cdot \sin(x) ). Or if you want, you could factor out an ( e^x ). This is the same thing as ( e^x \cdot (\cos(x) - \sin(x)) ).

So hopefully this makes the product rule a little bit more tangible, and once you have this in your tool belt, there's a whole broader class of functions and expressions that we can start to differentiate.

More Articles

View All
Prepping for the End of the World (Full Episode) | Doomsday Preppers
These four families are preparing for a time in the not-so-distant future when they believe water, food, and fuel will be scarce when the grid goes down. This could be our food source. We have three different sources of water; without good water, you’re n…
O'Leary Ventures President Talks Mortgages, Wines and Bags of Cash!
Now this is the story of a young man, a law school graduate, who, uh, paid off his student loan, huge student loan, with cash. How do you do something like this? We’re joined now by Alex Kenji of Toronto, president of O’Leary Ventures, a startup investmen…
9 Japanese Philosophies to Become Self-Disciplined and Stop Procrastinating
Have you ever struggled with procrastination or finding the motivation to get things done, feeling like you’re not living up to your own expectations? I won’t lie. I struggle with procrastination a lot, and it’s a challenge, especially when I have importa…
Fermat's Library Cofounders João Batalha and Luís Batalha
You guys are brothers, right? Yeah, yeah. Okay, he’s the older one. I’m two years younger. Okay, and what made you want to start for Matt’s library? Oh, so just for the people that don’t know what it is, Vermont is a platform for annotating papers. If…
Nat Geo Photographers: How They Got Their Start | National Geographic
[Music] You know, we all start from somewhere. For me, I thought if I could just give a voice and a name to wildlife by using my camera, then that’s it. It was very important for me to immortalize stories, so I started capturing moments happening around m…
Human Origins 101 | National Geographic
[Narrator] Millions of years before industry, agriculture, and civilization, the world stage was set for one creature’s unprecedented rise. The story of humanity’s evolution began about seven million years ago when the human lineage broke away from that o…