yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Product rule example


3m read
·Nov 11, 2024

So let's see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it.

So when you look at this, you might say, "Well, I know how to find the derivative with respect to ( e^x ). That's, in fact, just ( e^x )." And let me write this down. We know a few things. We know the derivative with respect to ( x ) of ( e^x ). ( e^x ) is ( e^x ). We know how to find the derivative of ( \cos(x) ). The derivative with respect to ( x ) of ( \cos(x) ) is equal to ( -\sin(x) ).

But how do we find the derivative of their product? Well, as you can imagine, this might involve the product rule. Let me just write down the product rule generally first. So if we take the derivative with respect to ( x ) of the first expression in terms of ( x ), so this is—we could call this ( U(x) )—times another expression that involves ( x ), so ( U \cdot V(x) ). This is going to be equal to—and I'm color coding it so we can really keep track of things—this is going to be equal to the derivative of the first expression.

So I could write that as ( U' ) of ( x ) times just the second expression—not the derivative of just the second expression—so times ( V(x) ), and then we have plus the first expression—not its derivative—just the first expression, ( U(x) ), times the derivative of the second expression. So the derivative of the second expression.

So what you remember is you have to do these two things here. You're going to end up with two different terms, and each of them you're going to take the derivative of one of them but not the other one. And then the other one, you'll take the derivative of the other one but not the first one. So ( U' ) derivative of ( U ) times ( V ) is ( U' \cdot V + U \cdot V' ).

Now when you just look at it like that, it seems a little bit abstract, and that might even be a little confusing. But that's why we have a tangible example here. I color-coded it intentionally so we can say that ( U(x) = e^x ) and ( V(x) = \cos(x) ). So ( V(x) = \cos(x) ), and if ( U(x) = e^x ), we know that the derivative of that with respect to ( x ) is still ( e^x ). That's one of the most magical things in mathematics—one of the things that makes it special.

So ( U' ) of ( x ) is still equal to ( e^x ), and ( V' ) of ( x ); ( V' ) of ( x ) we know is ( -\sin(x) ). So what's this going to be equal to? This is going to be equal to the derivative of the first expression, so the derivative of ( e^x ), which is just ( e^x ), times the second expression—not taking its derivative—so times ( \cos(x) ), plus the first expression—not taking its derivative—so ( e^x ) times the derivative of the second expression, so times the derivative of ( \cos(x) ), which is ( -\sin(x) ).

And it might be a little bit confusing because ( e^x ) is its own derivative, but this right over here you can view this as the derivative of ( e^x ), which happens to be ( e^x ). That's what's exciting about that expression or that function. And then this is just ( e^x ) without taking the derivative, of course the same thing.

But anyway, well, now we can just simplify it. This is going to be equal to—we could write this either as ( e^x \cdot \cos(x) - e^x \cdot \sin(x) ). Or if you want, you could factor out an ( e^x ). This is the same thing as ( e^x \cdot (\cos(x) - \sin(x)) ).

So hopefully this makes the product rule a little bit more tangible, and once you have this in your tool belt, there's a whole broader class of functions and expressions that we can start to differentiate.

More Articles

View All
Crabzilla - Photographing a “Monster” Crab | Exposure
It has down all the elements: the legs, the pincers, the ice stalks, the antennae. So, I took a few images. The shadow looked amazing, the lighting was great, yet there was just something missing. Coconut crabs are really good indicators of how untouched…
Why it's so hard to be happy
A long time ago, humanity rose to become the dominant species on planet Earth. And we were able to do this because of one specific trait. It certainly wasn’t our physical prowess, pretty much any animal the same size as us would absolutely destroy us in a…
The 5 BEST Credit Cards For Beginners in 2021
What’s up you guys, it’s Graham here! So welcome to the year of 2021, where YouTubers like myself can finally make videos with 2021 in the title. But here on the channel, it’s become kind of like an annual tradition to break down the best credit cards for…
Jim Crow part 4 | The Gilded Age (1865-1898) | US History | Khan Academy
So we’ve been talking about the system of Jim Crow segregation. In the last video, we left off in 1876. In 1876, there was a contested presidential election between a Republican candidate named Rutherford B. Hayes and a Democratic candidate named Samuel J…
3d vector fields, introduction | Multivariable calculus | Khan Academy
So in the last video, I talked about vector fields in the context of two dimensions, and here I’d like to do the same but for three dimensions. A three-dimensional vector field is given by a certain multivariable function that has a three-dimensional inp…
The Truth About Y Combinator
I love, I love the like, well, I’ve watched all your videos, so we kind of get YC. It’s like, guys, these videos aren’t YC. Like, yes. [Music] So, this is Michael Cybo with Dalton Caldwell, and today we just finished up, um, a YC batch, and we’re getting …