yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Product rule example


3m read
·Nov 11, 2024

So let's see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it.

So when you look at this, you might say, "Well, I know how to find the derivative with respect to ( e^x ). That's, in fact, just ( e^x )." And let me write this down. We know a few things. We know the derivative with respect to ( x ) of ( e^x ). ( e^x ) is ( e^x ). We know how to find the derivative of ( \cos(x) ). The derivative with respect to ( x ) of ( \cos(x) ) is equal to ( -\sin(x) ).

But how do we find the derivative of their product? Well, as you can imagine, this might involve the product rule. Let me just write down the product rule generally first. So if we take the derivative with respect to ( x ) of the first expression in terms of ( x ), so this is—we could call this ( U(x) )—times another expression that involves ( x ), so ( U \cdot V(x) ). This is going to be equal to—and I'm color coding it so we can really keep track of things—this is going to be equal to the derivative of the first expression.

So I could write that as ( U' ) of ( x ) times just the second expression—not the derivative of just the second expression—so times ( V(x) ), and then we have plus the first expression—not its derivative—just the first expression, ( U(x) ), times the derivative of the second expression. So the derivative of the second expression.

So what you remember is you have to do these two things here. You're going to end up with two different terms, and each of them you're going to take the derivative of one of them but not the other one. And then the other one, you'll take the derivative of the other one but not the first one. So ( U' ) derivative of ( U ) times ( V ) is ( U' \cdot V + U \cdot V' ).

Now when you just look at it like that, it seems a little bit abstract, and that might even be a little confusing. But that's why we have a tangible example here. I color-coded it intentionally so we can say that ( U(x) = e^x ) and ( V(x) = \cos(x) ). So ( V(x) = \cos(x) ), and if ( U(x) = e^x ), we know that the derivative of that with respect to ( x ) is still ( e^x ). That's one of the most magical things in mathematics—one of the things that makes it special.

So ( U' ) of ( x ) is still equal to ( e^x ), and ( V' ) of ( x ); ( V' ) of ( x ) we know is ( -\sin(x) ). So what's this going to be equal to? This is going to be equal to the derivative of the first expression, so the derivative of ( e^x ), which is just ( e^x ), times the second expression—not taking its derivative—so times ( \cos(x) ), plus the first expression—not taking its derivative—so ( e^x ) times the derivative of the second expression, so times the derivative of ( \cos(x) ), which is ( -\sin(x) ).

And it might be a little bit confusing because ( e^x ) is its own derivative, but this right over here you can view this as the derivative of ( e^x ), which happens to be ( e^x ). That's what's exciting about that expression or that function. And then this is just ( e^x ) without taking the derivative, of course the same thing.

But anyway, well, now we can just simplify it. This is going to be equal to—we could write this either as ( e^x \cdot \cos(x) - e^x \cdot \sin(x) ). Or if you want, you could factor out an ( e^x ). This is the same thing as ( e^x \cdot (\cos(x) - \sin(x)) ).

So hopefully this makes the product rule a little bit more tangible, and once you have this in your tool belt, there's a whole broader class of functions and expressions that we can start to differentiate.

More Articles

View All
Cast Volunteer Day | Saints & Strangers
We’re here with the cast and producers of Saints and Strangers, donating a couple of hours of work to the Los Angeles Regional Food Bank. Here at the LA Food Bank, we distribute a million pounds of food every single week, 20% of which is fresh fruits and…
It Takes a Village | Port Protection
For today, our goal out here is to make a duck barn so that we could have fresh eggs for the winter time. The people of Port Protection may pride themselves on being self-sufficient. I was looking for the other piece of rebar, but you only needed the one …
How China Rips Off American Small Businesses
[Music] Let’s say you have a product that you’re going to use Chinese manufacturing. You used to think it was low cost. You buy the molds, you spend $400,000 on molds. You start making the product, you start selling it in the United States. The minute i…
Joe Rogan brutally rejects Kamala Harris’s list of demands to appear on his podcast
The world’s biggest podcast host, Joe Rogan, has exposed a list of Kamala Harris’s demands in order to appear on his show. Following the hugely successful podcast interview between Joe Rogan and Republican Presidential nominee Donald Trump, which was view…
The Dalai Lama And Tibet's Future | Explorer
Music in the future, the bed I always so hope will be a democratic elected leadership power of people. People spoil it is feminine. Oh, and you’re playing the longer the great patient war. Yes, that’s yours, okay. The Dalai Lama wants to make sure I speak…
Estimating limit numerically | Limits | Differential Calculus | Khan Academy
Consider the table with function values for ( f(x) = \frac{x^2}{1 - \cos x} ) at positive ( x ) values near zero. Notice that there is one missing value in the table; this is the missing one right here. Use a calculator to evaluate ( f(x) ) at ( x = 0.1 )…