yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Product rule example


3m read
·Nov 11, 2024

So let's see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it.

So when you look at this, you might say, "Well, I know how to find the derivative with respect to ( e^x ). That's, in fact, just ( e^x )." And let me write this down. We know a few things. We know the derivative with respect to ( x ) of ( e^x ). ( e^x ) is ( e^x ). We know how to find the derivative of ( \cos(x) ). The derivative with respect to ( x ) of ( \cos(x) ) is equal to ( -\sin(x) ).

But how do we find the derivative of their product? Well, as you can imagine, this might involve the product rule. Let me just write down the product rule generally first. So if we take the derivative with respect to ( x ) of the first expression in terms of ( x ), so this is—we could call this ( U(x) )—times another expression that involves ( x ), so ( U \cdot V(x) ). This is going to be equal to—and I'm color coding it so we can really keep track of things—this is going to be equal to the derivative of the first expression.

So I could write that as ( U' ) of ( x ) times just the second expression—not the derivative of just the second expression—so times ( V(x) ), and then we have plus the first expression—not its derivative—just the first expression, ( U(x) ), times the derivative of the second expression. So the derivative of the second expression.

So what you remember is you have to do these two things here. You're going to end up with two different terms, and each of them you're going to take the derivative of one of them but not the other one. And then the other one, you'll take the derivative of the other one but not the first one. So ( U' ) derivative of ( U ) times ( V ) is ( U' \cdot V + U \cdot V' ).

Now when you just look at it like that, it seems a little bit abstract, and that might even be a little confusing. But that's why we have a tangible example here. I color-coded it intentionally so we can say that ( U(x) = e^x ) and ( V(x) = \cos(x) ). So ( V(x) = \cos(x) ), and if ( U(x) = e^x ), we know that the derivative of that with respect to ( x ) is still ( e^x ). That's one of the most magical things in mathematics—one of the things that makes it special.

So ( U' ) of ( x ) is still equal to ( e^x ), and ( V' ) of ( x ); ( V' ) of ( x ) we know is ( -\sin(x) ). So what's this going to be equal to? This is going to be equal to the derivative of the first expression, so the derivative of ( e^x ), which is just ( e^x ), times the second expression—not taking its derivative—so times ( \cos(x) ), plus the first expression—not taking its derivative—so ( e^x ) times the derivative of the second expression, so times the derivative of ( \cos(x) ), which is ( -\sin(x) ).

And it might be a little bit confusing because ( e^x ) is its own derivative, but this right over here you can view this as the derivative of ( e^x ), which happens to be ( e^x ). That's what's exciting about that expression or that function. And then this is just ( e^x ) without taking the derivative, of course the same thing.

But anyway, well, now we can just simplify it. This is going to be equal to—we could write this either as ( e^x \cdot \cos(x) - e^x \cdot \sin(x) ). Or if you want, you could factor out an ( e^x ). This is the same thing as ( e^x \cdot (\cos(x) - \sin(x)) ).

So hopefully this makes the product rule a little bit more tangible, and once you have this in your tool belt, there's a whole broader class of functions and expressions that we can start to differentiate.

More Articles

View All
What causes the seasons?
Why do we get the seasons? The seasons? Because of the atmosphere. To be honest with you, that’s a very easy question to answer. Now, we really don’t get seasons anymore because of global warming. Um, I think there was a time when I was a child where we d…
How To Make Friends
Friends make life good. They provide the scaffolding that makes it not just bearable, but fun. They give us a sense of meaning and purpose and are a source of security, self-esteem, and happiness. Almost nothing predicts how happy you will be as how conne…
Help me INTERVIEW THE PRESIDENT - Smarter Every Day 150
[music] Hey, it’s me, Destin. Welcome back to Smarter Every Day. This is different; it’s really a big deal. I have been invited to go to the White House to sit down with the President of the United States of America for 10 to 12 minutes to discuss issues …
why i don't spend money
These are five ways that I’m able to save a lot of money: Reuse grocery bags as trash bags instead of buying them from Costco. Only do laundry after 9 PM on weekdays when electricity is the cheapest. Skip the bottled water and drink right from the tap. Y…
Top 7 Renovation Mistakes - AVOID THESE!
What’s up guys, it’s Rand here. So over the last six years, I’ve identified five properties, and every one of those five properties needed to be removed. Between those properties, I’ve easily spent over a few hundred thousand dollars on renovations and up…
FTC Chair Lina Khan at Y Combinator
Thanks everybody for coming to White Combinator today. Uh, we’re so excited, uh, to host Cherina Khan of the Federal Trade Commission. Um, you know, uh, so I’m Luther LOM, the new head of public policy at White Combinator, and um, this is the first event …