yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Product rule example


3m read
·Nov 11, 2024

So let's see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it.

So when you look at this, you might say, "Well, I know how to find the derivative with respect to ( e^x ). That's, in fact, just ( e^x )." And let me write this down. We know a few things. We know the derivative with respect to ( x ) of ( e^x ). ( e^x ) is ( e^x ). We know how to find the derivative of ( \cos(x) ). The derivative with respect to ( x ) of ( \cos(x) ) is equal to ( -\sin(x) ).

But how do we find the derivative of their product? Well, as you can imagine, this might involve the product rule. Let me just write down the product rule generally first. So if we take the derivative with respect to ( x ) of the first expression in terms of ( x ), so this is—we could call this ( U(x) )—times another expression that involves ( x ), so ( U \cdot V(x) ). This is going to be equal to—and I'm color coding it so we can really keep track of things—this is going to be equal to the derivative of the first expression.

So I could write that as ( U' ) of ( x ) times just the second expression—not the derivative of just the second expression—so times ( V(x) ), and then we have plus the first expression—not its derivative—just the first expression, ( U(x) ), times the derivative of the second expression. So the derivative of the second expression.

So what you remember is you have to do these two things here. You're going to end up with two different terms, and each of them you're going to take the derivative of one of them but not the other one. And then the other one, you'll take the derivative of the other one but not the first one. So ( U' ) derivative of ( U ) times ( V ) is ( U' \cdot V + U \cdot V' ).

Now when you just look at it like that, it seems a little bit abstract, and that might even be a little confusing. But that's why we have a tangible example here. I color-coded it intentionally so we can say that ( U(x) = e^x ) and ( V(x) = \cos(x) ). So ( V(x) = \cos(x) ), and if ( U(x) = e^x ), we know that the derivative of that with respect to ( x ) is still ( e^x ). That's one of the most magical things in mathematics—one of the things that makes it special.

So ( U' ) of ( x ) is still equal to ( e^x ), and ( V' ) of ( x ); ( V' ) of ( x ) we know is ( -\sin(x) ). So what's this going to be equal to? This is going to be equal to the derivative of the first expression, so the derivative of ( e^x ), which is just ( e^x ), times the second expression—not taking its derivative—so times ( \cos(x) ), plus the first expression—not taking its derivative—so ( e^x ) times the derivative of the second expression, so times the derivative of ( \cos(x) ), which is ( -\sin(x) ).

And it might be a little bit confusing because ( e^x ) is its own derivative, but this right over here you can view this as the derivative of ( e^x ), which happens to be ( e^x ). That's what's exciting about that expression or that function. And then this is just ( e^x ) without taking the derivative, of course the same thing.

But anyway, well, now we can just simplify it. This is going to be equal to—we could write this either as ( e^x \cdot \cos(x) - e^x \cdot \sin(x) ). Or if you want, you could factor out an ( e^x ). This is the same thing as ( e^x \cdot (\cos(x) - \sin(x)) ).

So hopefully this makes the product rule a little bit more tangible, and once you have this in your tool belt, there's a whole broader class of functions and expressions that we can start to differentiate.

More Articles

View All
Would You Be Better Off if Fewer People Lived Before You? | Big Think
So population growth is a very real concern. When we were hunter-gatherers, we were at five million people on the planet. Now there’s seven billion, and we’re headed towards nine billion, maybe even ten billion by the middle of the century. And some envir…
Ben Shapiro: Telos, Responsibility and Cultivation
Ben and I met about eight months ago, eh? He came up to Toronto and gave a rousing talk and… Talk about political correctness at that point, quite a politically appointed political talk, and I got a couple of questions for you. One is what are you plannin…
Writing decimals and fractions from number lines
We’re told to express the point on the number line as both a fraction and a decimal, so pause this video and have a go at that. All right, now let’s do this together. We can see that the point in question is at a higher value than four and less than five…
Verifying inverse functions by composition: not inverse | High School Math | Khan Academy
[Voiceover] Let’s say that f of x is equal to two x minus three, and g of x, g of x is equal to 1⁄2 x plus three. What I wanna do in this video is evaluate what f of g of x is, and then I wanna evaluate what g of f of x is. So first, I wanna evaluate f of…
Stereotypes Threaten Your Brain's Well-Being: Memory, Anxiety, Motivation | Valerie Purdie Greenaway
JENNIFER BROWN: I’m going to jump right in, Valerie. Tell the group, what do you do now for your professional calling? Why do you love it? And tell us what motivated us originally to study what you study? VALERIE PURDIE GREENAWAY: So my day job is I am a…
Just How Expensive is the Stock Market Right Now?
Hey guys and welcome back to the channel. So I wanted to make this video to try and provide a balanced insight into the current state of the stock market. Because no doubt it can be hard to get a grip on what the hell is going on at a high level if you’re…