yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Product rule example


3m read
·Nov 11, 2024

So let's see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it.

So when you look at this, you might say, "Well, I know how to find the derivative with respect to ( e^x ). That's, in fact, just ( e^x )." And let me write this down. We know a few things. We know the derivative with respect to ( x ) of ( e^x ). ( e^x ) is ( e^x ). We know how to find the derivative of ( \cos(x) ). The derivative with respect to ( x ) of ( \cos(x) ) is equal to ( -\sin(x) ).

But how do we find the derivative of their product? Well, as you can imagine, this might involve the product rule. Let me just write down the product rule generally first. So if we take the derivative with respect to ( x ) of the first expression in terms of ( x ), so this is—we could call this ( U(x) )—times another expression that involves ( x ), so ( U \cdot V(x) ). This is going to be equal to—and I'm color coding it so we can really keep track of things—this is going to be equal to the derivative of the first expression.

So I could write that as ( U' ) of ( x ) times just the second expression—not the derivative of just the second expression—so times ( V(x) ), and then we have plus the first expression—not its derivative—just the first expression, ( U(x) ), times the derivative of the second expression. So the derivative of the second expression.

So what you remember is you have to do these two things here. You're going to end up with two different terms, and each of them you're going to take the derivative of one of them but not the other one. And then the other one, you'll take the derivative of the other one but not the first one. So ( U' ) derivative of ( U ) times ( V ) is ( U' \cdot V + U \cdot V' ).

Now when you just look at it like that, it seems a little bit abstract, and that might even be a little confusing. But that's why we have a tangible example here. I color-coded it intentionally so we can say that ( U(x) = e^x ) and ( V(x) = \cos(x) ). So ( V(x) = \cos(x) ), and if ( U(x) = e^x ), we know that the derivative of that with respect to ( x ) is still ( e^x ). That's one of the most magical things in mathematics—one of the things that makes it special.

So ( U' ) of ( x ) is still equal to ( e^x ), and ( V' ) of ( x ); ( V' ) of ( x ) we know is ( -\sin(x) ). So what's this going to be equal to? This is going to be equal to the derivative of the first expression, so the derivative of ( e^x ), which is just ( e^x ), times the second expression—not taking its derivative—so times ( \cos(x) ), plus the first expression—not taking its derivative—so ( e^x ) times the derivative of the second expression, so times the derivative of ( \cos(x) ), which is ( -\sin(x) ).

And it might be a little bit confusing because ( e^x ) is its own derivative, but this right over here you can view this as the derivative of ( e^x ), which happens to be ( e^x ). That's what's exciting about that expression or that function. And then this is just ( e^x ) without taking the derivative, of course the same thing.

But anyway, well, now we can just simplify it. This is going to be equal to—we could write this either as ( e^x \cdot \cos(x) - e^x \cdot \sin(x) ). Or if you want, you could factor out an ( e^x ). This is the same thing as ( e^x \cdot (\cos(x) - \sin(x)) ).

So hopefully this makes the product rule a little bit more tangible, and once you have this in your tool belt, there's a whole broader class of functions and expressions that we can start to differentiate.

More Articles

View All
Safari Live - Day 356 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. A very good afternoon to you all! Welcome to the sunset safari of today. My name is Lauren and on camera I do have Senzo th…
"The Biggest Mistake I've Ever Made" | Shark Tank's Kevin O'Leary & "The Mooch" Anthony Scaramucci
What do you tell them about building their own net worth and how to go forward and not trip up in that aspect? So many kids come out of college $80,000 in debt and they go straight downward from there. What advice do you give young kids in terms of start…
Confronting Pokimane | Inside The Million Dollar Empire
What’s up guys? It’s Graham here. So, a few weeks ago, dozens of you began sending me this video. It was of a Twitch streamer who goes by the username Pokey Main, who reacted to my feature in Glamour titled “How YouTuber Graham Stefan Lives in LA and Make…
Irony | Style | Grammar
Hello, Garans. Uh, today I want to talk about the concept of irony, which is a very difficult concept to nail down because it means so many things. But let’s begin with the best definition I can muster, which is that irony is the difference between expec…
When Money is No Longer an Issue
You’ve made more money than you could possibly imagine. You and your loved ones will not have to worry about financial problems for the rest of your lives. But there is a lot more life left. So what do you do now, especially since you’re struggling to fin…
How to Improve Creativity Skills
Creativity, creativity! According to dictionary.com, it is the state or quality of being creative. Thanks! So, if you’re wondering how to become more creative, then you’ve probably already searched how to be more creative on YouTube and found a couple of …