yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Product rule example


3m read
·Nov 11, 2024

So let's see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it.

So when you look at this, you might say, "Well, I know how to find the derivative with respect to ( e^x ). That's, in fact, just ( e^x )." And let me write this down. We know a few things. We know the derivative with respect to ( x ) of ( e^x ). ( e^x ) is ( e^x ). We know how to find the derivative of ( \cos(x) ). The derivative with respect to ( x ) of ( \cos(x) ) is equal to ( -\sin(x) ).

But how do we find the derivative of their product? Well, as you can imagine, this might involve the product rule. Let me just write down the product rule generally first. So if we take the derivative with respect to ( x ) of the first expression in terms of ( x ), so this is—we could call this ( U(x) )—times another expression that involves ( x ), so ( U \cdot V(x) ). This is going to be equal to—and I'm color coding it so we can really keep track of things—this is going to be equal to the derivative of the first expression.

So I could write that as ( U' ) of ( x ) times just the second expression—not the derivative of just the second expression—so times ( V(x) ), and then we have plus the first expression—not its derivative—just the first expression, ( U(x) ), times the derivative of the second expression. So the derivative of the second expression.

So what you remember is you have to do these two things here. You're going to end up with two different terms, and each of them you're going to take the derivative of one of them but not the other one. And then the other one, you'll take the derivative of the other one but not the first one. So ( U' ) derivative of ( U ) times ( V ) is ( U' \cdot V + U \cdot V' ).

Now when you just look at it like that, it seems a little bit abstract, and that might even be a little confusing. But that's why we have a tangible example here. I color-coded it intentionally so we can say that ( U(x) = e^x ) and ( V(x) = \cos(x) ). So ( V(x) = \cos(x) ), and if ( U(x) = e^x ), we know that the derivative of that with respect to ( x ) is still ( e^x ). That's one of the most magical things in mathematics—one of the things that makes it special.

So ( U' ) of ( x ) is still equal to ( e^x ), and ( V' ) of ( x ); ( V' ) of ( x ) we know is ( -\sin(x) ). So what's this going to be equal to? This is going to be equal to the derivative of the first expression, so the derivative of ( e^x ), which is just ( e^x ), times the second expression—not taking its derivative—so times ( \cos(x) ), plus the first expression—not taking its derivative—so ( e^x ) times the derivative of the second expression, so times the derivative of ( \cos(x) ), which is ( -\sin(x) ).

And it might be a little bit confusing because ( e^x ) is its own derivative, but this right over here you can view this as the derivative of ( e^x ), which happens to be ( e^x ). That's what's exciting about that expression or that function. And then this is just ( e^x ) without taking the derivative, of course the same thing.

But anyway, well, now we can just simplify it. This is going to be equal to—we could write this either as ( e^x \cdot \cos(x) - e^x \cdot \sin(x) ). Or if you want, you could factor out an ( e^x ). This is the same thing as ( e^x \cdot (\cos(x) - \sin(x)) ).

So hopefully this makes the product rule a little bit more tangible, and once you have this in your tool belt, there's a whole broader class of functions and expressions that we can start to differentiate.

More Articles

View All
How I built a $275 million biotech company from nothing
What I founded Envision, I just did not look like the typical biotech or healthcare founder. I’m a brown woman. I’m a woman of color, and I didn’t have any one of the many higher degrees that they like, you know, MBA, PhD, MD. So there I am with my little…
5 FREE Ways to Get Better With Money
Hey guys and welcome back to the channel. Today we’re going to be discussing five awesome tips that will help you get better with money that are completely free. No fluff! I’m not going to tell you to go fill in surveys for 10 hours. I’m going to tell you…
Hawai'i's Volcanoes of Life | America's National Parks | National Geographic
[MUSIC PLAYING] NARRATOR: Hawaii is the only place in the US where humpbacks breed and nurse their young. [WHALE CALLS] Born with very little fat, calves would soon freeze to death in the cold waters of Alaska. Mothers come to these clear shallow waters …
Identifying unit fractions word problem | Math | 3rd grade | Khan Academy
This question says Vera’s dinner plate is divided into three equal size sections. Vera puts all her broccoli in one section, and then we’re asked what fraction of Vera’s plate has broccoli. Okay, so we have a plate with three equal size sections, and we …
Simple polynomial division
Let’s say someone walks up to you on the street and they give you this expression: x squared plus 7x plus 10 divided by x plus 2. They say, “See if you could simplify this thing.” So, pause this video and see if you can do that. One way to think about it…
Soar Over the Lush Rice Terraces of the Philippines | National Geographic
[Music] This living cultural landscape is nestled into the remote slopes of the Cordillera Yarra mountain range in the Philippines. [Music] For two thousand years, the mountains of Ifugao province have been cultivated with terraced rice fields that stretc…