yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Product rule example


3m read
·Nov 11, 2024

So let's see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it.

So when you look at this, you might say, "Well, I know how to find the derivative with respect to ( e^x ). That's, in fact, just ( e^x )." And let me write this down. We know a few things. We know the derivative with respect to ( x ) of ( e^x ). ( e^x ) is ( e^x ). We know how to find the derivative of ( \cos(x) ). The derivative with respect to ( x ) of ( \cos(x) ) is equal to ( -\sin(x) ).

But how do we find the derivative of their product? Well, as you can imagine, this might involve the product rule. Let me just write down the product rule generally first. So if we take the derivative with respect to ( x ) of the first expression in terms of ( x ), so this is—we could call this ( U(x) )—times another expression that involves ( x ), so ( U \cdot V(x) ). This is going to be equal to—and I'm color coding it so we can really keep track of things—this is going to be equal to the derivative of the first expression.

So I could write that as ( U' ) of ( x ) times just the second expression—not the derivative of just the second expression—so times ( V(x) ), and then we have plus the first expression—not its derivative—just the first expression, ( U(x) ), times the derivative of the second expression. So the derivative of the second expression.

So what you remember is you have to do these two things here. You're going to end up with two different terms, and each of them you're going to take the derivative of one of them but not the other one. And then the other one, you'll take the derivative of the other one but not the first one. So ( U' ) derivative of ( U ) times ( V ) is ( U' \cdot V + U \cdot V' ).

Now when you just look at it like that, it seems a little bit abstract, and that might even be a little confusing. But that's why we have a tangible example here. I color-coded it intentionally so we can say that ( U(x) = e^x ) and ( V(x) = \cos(x) ). So ( V(x) = \cos(x) ), and if ( U(x) = e^x ), we know that the derivative of that with respect to ( x ) is still ( e^x ). That's one of the most magical things in mathematics—one of the things that makes it special.

So ( U' ) of ( x ) is still equal to ( e^x ), and ( V' ) of ( x ); ( V' ) of ( x ) we know is ( -\sin(x) ). So what's this going to be equal to? This is going to be equal to the derivative of the first expression, so the derivative of ( e^x ), which is just ( e^x ), times the second expression—not taking its derivative—so times ( \cos(x) ), plus the first expression—not taking its derivative—so ( e^x ) times the derivative of the second expression, so times the derivative of ( \cos(x) ), which is ( -\sin(x) ).

And it might be a little bit confusing because ( e^x ) is its own derivative, but this right over here you can view this as the derivative of ( e^x ), which happens to be ( e^x ). That's what's exciting about that expression or that function. And then this is just ( e^x ) without taking the derivative, of course the same thing.

But anyway, well, now we can just simplify it. This is going to be equal to—we could write this either as ( e^x \cdot \cos(x) - e^x \cdot \sin(x) ). Or if you want, you could factor out an ( e^x ). This is the same thing as ( e^x \cdot (\cos(x) - \sin(x)) ).

So hopefully this makes the product rule a little bit more tangible, and once you have this in your tool belt, there's a whole broader class of functions and expressions that we can start to differentiate.

More Articles

View All
Warren Buffett: 90 Years of Investment Wisdom Summed Up in 15 Minutes (2021)
Whenever someone asks me how they can learn more about investing, the first thing I tell them is study Warren Buffett. He has an amazing ability to make complicated finance concepts seem so simple. Here are my five favorite clips of Warren Buffett explain…
The Backwards Brain Bicycle - Smarter Every Day 133
Hey, it’s me Destin. Welcome back to Smarter Every Day. You’ve heard people say, “It’s just like riding a bike,” meaning it’s really easy and you can’t forget how to do it, right? But I did something. I did something that damaged my mind. It happened on t…
The Next Stock Market Crash (How To Profit)
What’s up you guys? It’s Graham here. And just when you thought things were going well, everything gets okay. In all seriousness, we need to address a topic that not a lot of people want to think about, and that’s the fact that at some point in the future…
How Not to Be Pathetic | Stoic Philosophy & Emotions
English speakers often use the term “pathetic” in a derogatory manner, which characterizes weakness and helplessness in other people. Hence, most people don’t want to be pathetic, and we generally don’t like pathetic people. But what makes a person pathet…
Jay Reno of Feather, a Furniture Subscription Startup
Jay Reno: Welcome to the podcast. Interviewee: Thank you for having me. Jay Reno: So you are the founder and CEO of Feather, which was in the Summer ‘17 batch. Feather is a furniture subscription service. At the core of it is this idea that people don’t…
Gordon Fishes for Eels | Gordon Ramsay: Uncharted
First things first. Time to go fishing. I hope to get some—some eels. Some eels? Yeah, a Conger eel. We have big conger eels here. GORDON RAMSEY (VOICEOVER): Of course, David wants to go fishing for conger eels. They’re powerful and enormous, just like D…