yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Product rule example


3m read
·Nov 11, 2024

So let's see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it.

So when you look at this, you might say, "Well, I know how to find the derivative with respect to ( e^x ). That's, in fact, just ( e^x )." And let me write this down. We know a few things. We know the derivative with respect to ( x ) of ( e^x ). ( e^x ) is ( e^x ). We know how to find the derivative of ( \cos(x) ). The derivative with respect to ( x ) of ( \cos(x) ) is equal to ( -\sin(x) ).

But how do we find the derivative of their product? Well, as you can imagine, this might involve the product rule. Let me just write down the product rule generally first. So if we take the derivative with respect to ( x ) of the first expression in terms of ( x ), so this is—we could call this ( U(x) )—times another expression that involves ( x ), so ( U \cdot V(x) ). This is going to be equal to—and I'm color coding it so we can really keep track of things—this is going to be equal to the derivative of the first expression.

So I could write that as ( U' ) of ( x ) times just the second expression—not the derivative of just the second expression—so times ( V(x) ), and then we have plus the first expression—not its derivative—just the first expression, ( U(x) ), times the derivative of the second expression. So the derivative of the second expression.

So what you remember is you have to do these two things here. You're going to end up with two different terms, and each of them you're going to take the derivative of one of them but not the other one. And then the other one, you'll take the derivative of the other one but not the first one. So ( U' ) derivative of ( U ) times ( V ) is ( U' \cdot V + U \cdot V' ).

Now when you just look at it like that, it seems a little bit abstract, and that might even be a little confusing. But that's why we have a tangible example here. I color-coded it intentionally so we can say that ( U(x) = e^x ) and ( V(x) = \cos(x) ). So ( V(x) = \cos(x) ), and if ( U(x) = e^x ), we know that the derivative of that with respect to ( x ) is still ( e^x ). That's one of the most magical things in mathematics—one of the things that makes it special.

So ( U' ) of ( x ) is still equal to ( e^x ), and ( V' ) of ( x ); ( V' ) of ( x ) we know is ( -\sin(x) ). So what's this going to be equal to? This is going to be equal to the derivative of the first expression, so the derivative of ( e^x ), which is just ( e^x ), times the second expression—not taking its derivative—so times ( \cos(x) ), plus the first expression—not taking its derivative—so ( e^x ) times the derivative of the second expression, so times the derivative of ( \cos(x) ), which is ( -\sin(x) ).

And it might be a little bit confusing because ( e^x ) is its own derivative, but this right over here you can view this as the derivative of ( e^x ), which happens to be ( e^x ). That's what's exciting about that expression or that function. And then this is just ( e^x ) without taking the derivative, of course the same thing.

But anyway, well, now we can just simplify it. This is going to be equal to—we could write this either as ( e^x \cdot \cos(x) - e^x \cdot \sin(x) ). Or if you want, you could factor out an ( e^x ). This is the same thing as ( e^x \cdot (\cos(x) - \sin(x)) ).

So hopefully this makes the product rule a little bit more tangible, and once you have this in your tool belt, there's a whole broader class of functions and expressions that we can start to differentiate.

More Articles

View All
Armie Hammer Ascends From an Underground Cave | Running Wild With Bear Grylls
[music playing] ARMIE HAMMER: Whew! Yeah. Good to go. BEAR GRYLLS: OK. Our gear weighs nearly 75 pounds, and it’s too heavy to carry up this ladder. So we’re going to cache it on the sea floor like Navy SEALs do when they hide their gear until it can be…
Definite integral involving natural log | AP Calculus AB | Khan Academy
Let’s now take the definite integral from 2 to 4 of (6 + x^2) over (x^3) dx. At first, this might seem pretty daunting. I have this rational expression, but if we just rewrite this, it might jump out at you how this could be a little bit simpler. So, thi…
Rebuilding the World of 1620 | Saints & Strangers
I’ve covered myself a little. I do not sleep safe, nor do I seek glory at war. If it’s something like this, where it’s 1620, you finally got to get yourself immersed into the era. To start with, I did a lot of research on the pilgrims themselves: who they…
Is Meat Really that Bad?
Food is arguably the best thing about being alive. No other bodily pleasure is enjoyed multiple times every day and never gets old. It’s an expression of culture, our parents’ love, and a means of celebration or comfort. That’s why it hits a special nerve…
Persistence Of Vision
So tonight I’m hanging out with my friend Nigel, and he’s brought along one of his science toys—a little white plastic ball. Um, it’s not actually a white plastic ball at all. You told me you were bringing the white plastic ball tonight. It’s, uh, what co…
Change in angular velocity when velocity doubles
We’re told that a car with wheel radius r moves at a linear velocity v, and this is a bolded v to show that it’s a vector. Suddenly, the car accelerates to velocity 2v. How does the angular velocity of the wheels change? So pause this video and see if you…