yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Product rule example


3m read
·Nov 11, 2024

So let's see if we can find the derivative with respect to ( x ) of ( F = e^x \cdot \cos(x) ). And like always, pause this video and give it a go on your own before we work through it.

So when you look at this, you might say, "Well, I know how to find the derivative with respect to ( e^x ). That's, in fact, just ( e^x )." And let me write this down. We know a few things. We know the derivative with respect to ( x ) of ( e^x ). ( e^x ) is ( e^x ). We know how to find the derivative of ( \cos(x) ). The derivative with respect to ( x ) of ( \cos(x) ) is equal to ( -\sin(x) ).

But how do we find the derivative of their product? Well, as you can imagine, this might involve the product rule. Let me just write down the product rule generally first. So if we take the derivative with respect to ( x ) of the first expression in terms of ( x ), so this is—we could call this ( U(x) )—times another expression that involves ( x ), so ( U \cdot V(x) ). This is going to be equal to—and I'm color coding it so we can really keep track of things—this is going to be equal to the derivative of the first expression.

So I could write that as ( U' ) of ( x ) times just the second expression—not the derivative of just the second expression—so times ( V(x) ), and then we have plus the first expression—not its derivative—just the first expression, ( U(x) ), times the derivative of the second expression. So the derivative of the second expression.

So what you remember is you have to do these two things here. You're going to end up with two different terms, and each of them you're going to take the derivative of one of them but not the other one. And then the other one, you'll take the derivative of the other one but not the first one. So ( U' ) derivative of ( U ) times ( V ) is ( U' \cdot V + U \cdot V' ).

Now when you just look at it like that, it seems a little bit abstract, and that might even be a little confusing. But that's why we have a tangible example here. I color-coded it intentionally so we can say that ( U(x) = e^x ) and ( V(x) = \cos(x) ). So ( V(x) = \cos(x) ), and if ( U(x) = e^x ), we know that the derivative of that with respect to ( x ) is still ( e^x ). That's one of the most magical things in mathematics—one of the things that makes it special.

So ( U' ) of ( x ) is still equal to ( e^x ), and ( V' ) of ( x ); ( V' ) of ( x ) we know is ( -\sin(x) ). So what's this going to be equal to? This is going to be equal to the derivative of the first expression, so the derivative of ( e^x ), which is just ( e^x ), times the second expression—not taking its derivative—so times ( \cos(x) ), plus the first expression—not taking its derivative—so ( e^x ) times the derivative of the second expression, so times the derivative of ( \cos(x) ), which is ( -\sin(x) ).

And it might be a little bit confusing because ( e^x ) is its own derivative, but this right over here you can view this as the derivative of ( e^x ), which happens to be ( e^x ). That's what's exciting about that expression or that function. And then this is just ( e^x ) without taking the derivative, of course the same thing.

But anyway, well, now we can just simplify it. This is going to be equal to—we could write this either as ( e^x \cdot \cos(x) - e^x \cdot \sin(x) ). Or if you want, you could factor out an ( e^x ). This is the same thing as ( e^x \cdot (\cos(x) - \sin(x)) ).

So hopefully this makes the product rule a little bit more tangible, and once you have this in your tool belt, there's a whole broader class of functions and expressions that we can start to differentiate.

More Articles

View All
This Disease is Deadlier Than The Plague
Hello, Steve here. Today I am moving over as the voice of Kurzgesagt for something really special. Our dearest friend John Green would like to tell you a story that’s very close to his heart. So, let’s hear it from him directly. Hey, John! Hey, Steve. T…
What’s the most effective way to offset the depreciation of your jet?
So what’s kind of the sweet spot in terms of how old the jet is where someone else is taking the depreciation and the big hit for you, but you’re not going to be stuck with something no one wants in 5 to 10 years? No, it’s a great question, Preo, because…
Estimating subtracting decimals
[Instructor] Alright, now let’s get some practice estimating, subtracting decimals. So, over here it says 12.93 minus 6.1 is approximately equal to what? This squiggly-looking equal sign you can view as roughly equal to or approximately equal to. So, paus…
Why I Just Lost $4,000,000
What’s up guys, it’s Graham here. So here’s the deal: despite me saving the vast majority of my income, reading all things personal finance, and trying to be the best example to everyone who watches my channel, I’m four million dollars in debt. Initially,…
Change in angular velocity when velocity doubles
We’re told that a car with wheel radius r moves at a linear velocity v, and this is a bolded v to show that it’s a vector. Suddenly, the car accelerates to velocity 2v. How does the angular velocity of the wheels change? So pause this video and see if you…
Everything About Grain Bins (Farmers are Geniuses) - Smarter Every Day 218
Holy cow, there’s a lot going on here! Hey, it’s me, Destin. Welcome back to Smarter Everyday. When you eat today, that’s food going to get to your plate from a field like this, and before it gets in that field, it’s going to pass through the hand and the…