yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Chain Drop Answer 2


2m read
·Nov 10, 2024

All right, are you ready for the moment of truth? Let's drop these two objects at exactly the same time and see which one hits the ground first. Ready? 3, 2, 1. Wow! Did you see that? The one connected to the chain landed just before the other free weight. I'd like to show this in slow motion so you can see that the weights are accelerating at just slightly different rates.

[Music] Go! Oh, why did that happen? I mean, most people, most students of physics, would know that all objects on Earth's surface should accelerate down at the same rate: 9.8 m/s squared. But in this case, what happens is the chain actually whips the weight around, so it accelerates at a rate greater than the acceleration of objects when in free fall. That's a pretty remarkable result.

I want you to think about the bend in the chain as the weight descends. The chain goes from falling to becoming stationary, so it's accelerating up. The tension required to accelerate the chain up actually pulls down on the weight, accelerating it at a rate greater than the acceleration due to gravity, and that's why it hits the ground first.

Now, this actually happens to bungee jumpers. If the weight of the rope is appreciable, they will actually accelerate down at a rate faster than free fall, faster than 9.8 m/s squared. When I went bungee jumping, I was aware of this. What is actually true is that as you fall, your acceleration will be greater than free fall, and that's due to some, uh, effects of the way the rope pulls on you.

So I'll do an explanation of that later when I'm not scared out of my mind. Oh my God! I couldn't figure out what the acceleration was as I was going down, but you know, it fell high. It fell very fast—very great increase in your rate of speed. So, oh my God, that was fast! Loved it!

More Articles

View All
Colonial Weaponry | Saints & Strangers
[Music] Radio weapons, push off, push off design. Mr. Bradford, fire! This is your standard, uh, standard matchlock musket. It was the earliest firing, uh, musket that there was. This over here is a match cord; both sides were normally kept lit in case …
Turning Your Users Into Paying Customers
The best feedback you’re gonna get about your product is in the three seconds after you tell them the price. Yes. [Music] Hello, this is Michael with Harj and Brad. Welcome to Inside the Group Partners Lounge. So, as you see Group Partners, we find ours…
What Everyone Gets Wrong About Planes
(brooding music) Most plane doors aren’t locked. There are no keys, no sensors, or passcodes to secure them. If someone wants to pull the lever, they can. A man opened the emergency exit door and forced his way off the plane. And yet with 40 million flig…
Volume of rectangular pyramids using rectangular prisms | Grade 7 (TX TEKS) | Khan Academy
Now let’s look at a rectangular prism. This is not a cube because we can see that all the sides have different lengths. We have the length, the width, and the height, and those are all different. To find the volume of this, I would still multiply the leng…
Kamala’s $25K Homebuyers Tax Credit Will Backfire
Kevin, look, I feel deeply for Jenzy. I can’t imagine being a first-time home buyer and you’re staring down, you know, million-dollar homes with huge interest rates. I mean, is that the plan that will work? I got two Gen Z in my family right now, and the…
Introduction to reaction quotient Qc | Chemical equilibrium | Chemistry | Khan Academy
Today, we’re going to be talking about the reaction quotient Q. In this video, I’m going to go over how you calculate Q and how you use it. We’re going to start with an example reaction between sulfur dioxide (SO2) gas, which will react with oxygen gas. …