yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The man who lost his sense of touch - Antonio Cataldo


3m read
·Nov 8, 2024

In 1971, Ian Waterman suddenly collapsed from a severe case of what seemed to be gastric flu. His illness passed after a few days, but a stranger set of symptoms lingered. Although his muscles and joints remained healthy, Waterman was unable to move. In fact, he was unable to feel anything from the neck down. Eventually, he was diagnosed with a rare and extreme form of deafferentation, a neurological condition in which certain signals from the nervous system are interrupted or impaired.

Without his body's constant feedback on how his limbs were moving, Waterman was unable to sit up, stand, or walk. But over time, he taught himself to use sight to judge the distance of his limbs from other objects. And eventually he regained complete control of his body—so long as he could see it. We often don’t think of touch as being a vital part of movement. But touch is just one part of the somatosensory system, a network that oversees all the sensations arising from the surface and interior of our bodies.

Touch, pain, temperature, and our awareness of our bodies in space—also known as proprioception—are regulated by this system. And when something goes wrong, the effects can be dramatic. All these sensations are processed by millions of tiny receptor cells embedded in our skin, muscles, tendons, and organs. Every square centimeter of our skin is packed with hundreds of these cells, and their shape, size, and depth determine what kind of stimuli they respond to.

Mechanoreceptors sense mechanical deformation of the skin. This could be triggered by low or high frequency vibrations, a stretch, or simply light, static pressure. Thermoreceptors respond to temperature changes, while nociceptors sense pain. And proprioceptors sit deep in your muscles and tendons, continually detecting and relaying information about the position of your body. Your brain then combines this information with other sensory data to move through space without needing to see your limbs.

All of these receptors work by sending electrical signals to the brain through fibers they’re attached to. And the speed of those signals varies with the fiber’s thickness. For example, some nociceptors are attached to fibers with slightly more conductive, fatty myelin than others. So when you get hurt, the electrical impulses from thicker nociceptors trigger sharp, intense pain, while thin, unmyelinated nociceptors are responsible for the dull, aching pain that follows.

And since the fibers carrying tactile information are much thicker than those carrying nociceptive signals, rubbing an injury can produce temporary relief from the pain. These receptors generate a constant flood of signals that travel through the nervous system to the brain. But if this process is disrupted—either by damage to the skin, the nerves, or the brain—the network breaks down. And since it underpins so many bodily functions, damage to the somatosensory system can manifest in a wide variety of ways.

In Waterman’s case, an autoimmune reaction attacked a large swath of his nervous system, leaving him with no tactile or proprioceptive sensations from the neck down. But deafferentation is just one of many somatosensory disorders. Individuals can receive damage to a specific brain area or a section of skin, resulting in the loss of certain sensations in particular locations. And the impact of this loss can be significant.

Losing tactile sensations makes it difficult to gauge how much strength to use in a situation. Without the warning signals provided by thermal and pain stimuli, we don’t react when our bodies are damaged. And, being deprived of social touch can cause a condition known as touch starvation, characterized by anxiety, depression, high blood pressure, and even a weakened immune system. Many individuals who face these realities have found innovative ways to adapt.

But it’s undeniable that all these invisible sensations play a vital role in how we navigate the world—even if they can be difficult to put your finger on.

More Articles

View All
Pushing The Limits Of Extreme Breath-Holding
Inside the tank is Brandon Birchak, and he is going to attempt to hold his breath for this entire video. (dramatic music) Brandon is one of the world’s foremost experts in breath work, so please don’t try this at home. I’ll put his info in the description…
How The Stock Exchange Works (For Dummies)
What is the Stock Exchange and how does it work? The Stock Exchange is nothing more than a giant globally network tend to organize the market place where every day huge sums of money are moved back and forth. In total over sixty trillion (60,000,000,000,0…
Be a Million-Dollar Real Estate Agent...with 6 Techniques
What’s up you guys? It’s Graham here. So I want to share with you guys the easiest, simplest, fastest, bestest, coolest, most awesomest tips to be a better real estate agent. And just as a forewarning on this, some of these might actually sound like I’m …
Andrew Mason at Startup School SV 2014
That was a really good intro for making it up just then, and it definitely sounded like that, like it was bad in the way jazz is bad. Well, you’re dodging the question of that wonderful music we were just listening to from your album, “Hardly Working.” P…
This Video is Worth $13,568.99
Before this video loaded, you probably watched an ad and/or one will appear right about… now. How did this exact ad get on this video? And, what you really want to know, how much money do these things make? Okay, there are three players in this game. Cre…
Natural, cyclical, structural, and frictional unemployment rates | AP Macroeconomics | Khan Academy
[Instructor] We’ve already discussed the notion of unemployment at length in other videos. And what we’re going to do in this video is dig a little bit deeper and think about what makes up the unemployment rate? And just as a review, the unemployment ra…