yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of inverse functions | Advanced derivatives | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So let's say I have two functions that are the inverse of each other. So I have f of x, and then I also have g of x, which is equal to the inverse of f of x, and f of x would be the inverse of g of x as well. If the notion of an inverse function is completely unfamiliar to you, I encourage you to review inverse functions on Khan Academy.

Now, one of the properties of inverse functions is that if I were to take g of f of x, g of f of x, or I could say the f inverse of f of x, that this is just going to be equal to x. It comes straight out of what an inverse of a function is. If this is x right over here, the function f would map to some value f of x, so that's f of x right over there.

Then, the function g, or f inverse, if you input f of x into it, it would take you back, it would take you back to x. So that would be f inverse, or we're saying g is the same thing as f inverse. All of that so far is a review of inverse functions.

But now we're going to apply a little bit of calculus to it using the chain rule, and we're going to get a pretty interesting result. What I want to do is take the derivative of both sides of this equation right over here. So let's apply the derivative operator d/dx on the left-hand side, d/dx on the right-hand side, and what are we going to get?

Well, on the left-hand side, we would apply the chain rule. So this is going to be the derivative of g with respect to f of x. So that's going to be g prime of f of x times the derivative of f of x with respect to x. So times f prime of x.

And then that is going to be equal to what? Well, the derivative with respect to x of x, that's just equal to 1. This is where we get our interesting result. All we did so far is we used something we knew about inverse functions, and we used the chain rule to take the derivative of the left-hand side.

But if you divide both sides by g prime of f of x, what are you going to get? You're going to get a relationship between the derivative of a function and the derivative of its inverse. So you get f prime of x is going to be equal to 1 over all of this business, 1 over g prime of f of x.

This is really neat because if you know something about the derivative of a function, you can then start to figure out things about the derivative of its inverse. We can actually see this is true with some classic functions.

So let's say that f of x is equal to e to the x, and so g of x would be equal to the inverse of f, so f inverse. What's the inverse of e to the x? Well, one way to think about it is if you have y is equal to e to the x. If you want the inverse, you can swap the variables and then solve for y again.

So you'd get x is equal to e to the y. You take the natural log of both sides, you get natural log of x is equal to y. So the inverse of e to the x is natural log of x. And once again, that's all review of inverse functions. If that's unfamiliar, review it on Khan Academy.

So g of x is going to be equal to the natural log of x. Now let's see if this holds true for these two functions. Well, what is f prime of x going to be? Well, this is one of those amazing results in calculus. One of these neat things about the number e is that the derivative of e to the x is e to the x.

In other videos, we also saw that the derivative of the natural log of x is 1 over x. So let's see if this holds out. We should get a result. f prime of x, e to the x, should be equal to 1 over g prime of f of x.

So g prime of f of x, so g prime is 1 over our f of x, and f of x is e to the x. 1 over e to the x, is this indeed true? Yes, it is. 1 over 1 over e to the x is just going to be e to the x, so it all checks out.

You could do the other way because these are inverses of each other. You could say g prime of x is going to be equal to 1 over f prime of g of x because they're inverses of each other.

Actually, what's really neat about this is that you could actually use this to get a sense of what the derivative of an inverse function is even going to be.

More Articles

View All
Project MKUltra: The CIA’s Mind Control Operation
Stay safe on mine with - lean more on that later. After World War Two, the tension between the two emerging superpowers, the United States and the then Soviet Union, was at an all-time high. The threat of a nuclear war and sequentially the end of human e…
The Controversial Physics of Curling - COLD HARD SCIENCE - Smarter Every Day 111
Hey, it’s me Destin, welcome back to Smarter Every Day. So in the last episode, I explained that it’s not always the most athletic team that wins in sport; sometimes it involves the physical manipulation of objects, so sometimes it’s the most intelligent …
Limits of trigonometric functions | Limits and continuity | AP Calculus AB | Khan Academy
What we’re going to do in this video is think about limits involving trigonometric functions. So, let’s just start with a fairly straightforward one. Let’s find the limit as X approaches Pi of sine of x. Pause the video and see if you can figure this out…
How to build a relationship with your buyers.
Right now, you have the two ADXs, two ox, one’s matte and one’s shiny inside. How much you think you’re flying each of them? 350 each? That’s a pretty good usage on those airplanes as they’re mostly flying around. I have a brother who lives in it, goes t…
Why Boredom is Good For You
Part of this video was sponsored by LastPass. Stick around to the end for a word from our sponsor. In a recent study, participants were placed in a room for between 6 and 15 minutes. They were given nothing except a button that they knew would shock them…
a day full of eating in Tokyo,Japan 🍣~ spend the day with me🇯🇵
Hey fam! To welcome you to a day in my life in Tokyo. This day is full of adventures, and today I’m excited to share with you some of my favorite activities. First up, we have Ginson. The restaurant is hidden away from the street, but once you enter the r…