yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of inverse functions | Advanced derivatives | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So let's say I have two functions that are the inverse of each other. So I have f of x, and then I also have g of x, which is equal to the inverse of f of x, and f of x would be the inverse of g of x as well. If the notion of an inverse function is completely unfamiliar to you, I encourage you to review inverse functions on Khan Academy.

Now, one of the properties of inverse functions is that if I were to take g of f of x, g of f of x, or I could say the f inverse of f of x, that this is just going to be equal to x. It comes straight out of what an inverse of a function is. If this is x right over here, the function f would map to some value f of x, so that's f of x right over there.

Then, the function g, or f inverse, if you input f of x into it, it would take you back, it would take you back to x. So that would be f inverse, or we're saying g is the same thing as f inverse. All of that so far is a review of inverse functions.

But now we're going to apply a little bit of calculus to it using the chain rule, and we're going to get a pretty interesting result. What I want to do is take the derivative of both sides of this equation right over here. So let's apply the derivative operator d/dx on the left-hand side, d/dx on the right-hand side, and what are we going to get?

Well, on the left-hand side, we would apply the chain rule. So this is going to be the derivative of g with respect to f of x. So that's going to be g prime of f of x times the derivative of f of x with respect to x. So times f prime of x.

And then that is going to be equal to what? Well, the derivative with respect to x of x, that's just equal to 1. This is where we get our interesting result. All we did so far is we used something we knew about inverse functions, and we used the chain rule to take the derivative of the left-hand side.

But if you divide both sides by g prime of f of x, what are you going to get? You're going to get a relationship between the derivative of a function and the derivative of its inverse. So you get f prime of x is going to be equal to 1 over all of this business, 1 over g prime of f of x.

This is really neat because if you know something about the derivative of a function, you can then start to figure out things about the derivative of its inverse. We can actually see this is true with some classic functions.

So let's say that f of x is equal to e to the x, and so g of x would be equal to the inverse of f, so f inverse. What's the inverse of e to the x? Well, one way to think about it is if you have y is equal to e to the x. If you want the inverse, you can swap the variables and then solve for y again.

So you'd get x is equal to e to the y. You take the natural log of both sides, you get natural log of x is equal to y. So the inverse of e to the x is natural log of x. And once again, that's all review of inverse functions. If that's unfamiliar, review it on Khan Academy.

So g of x is going to be equal to the natural log of x. Now let's see if this holds true for these two functions. Well, what is f prime of x going to be? Well, this is one of those amazing results in calculus. One of these neat things about the number e is that the derivative of e to the x is e to the x.

In other videos, we also saw that the derivative of the natural log of x is 1 over x. So let's see if this holds out. We should get a result. f prime of x, e to the x, should be equal to 1 over g prime of f of x.

So g prime of f of x, so g prime is 1 over our f of x, and f of x is e to the x. 1 over e to the x, is this indeed true? Yes, it is. 1 over 1 over e to the x is just going to be e to the x, so it all checks out.

You could do the other way because these are inverses of each other. You could say g prime of x is going to be equal to 1 over f prime of g of x because they're inverses of each other.

Actually, what's really neat about this is that you could actually use this to get a sense of what the derivative of an inverse function is even going to be.

More Articles

View All
15 Character Traits You Notice When Hanging Out With Rich, Successful People
If you want to be rich and successful, then you have to learn how to hang around rich and successful people. They should feel like you’re one of them, not like you’re an outsider. When you hang around successful people long enough, you’ll see that they ju…
Inside the Illegal Ape Trade | Trafficked: Underworlds with Mariana van Zeller
I’m Mariana Vanel, as a journalist covering the underworld. I’ve seen almost everything that can be trafficked, but apes was a really sad and difficult story to report on. Wildlife trafficking is the fourth most lucrative crime in the world; we are talkin…
Direction of reversible reactions | Equilibrium | AP Chemistry | Khan Academy
As an example of a reversible reaction, let’s look at the hypothetical reaction where diatomic gas X₂ turns into its individual atoms, X. It would turn into two of them, so X₂ goes to 2X. The forward reaction is X₂ turning into 2X, and the reverse reactio…
Directional derivatives and slope
Hello everyone! So what I want to talk about here is how to interpret the directional derivative in terms of graphs. I have here the graph of a function, a multivariable function: it’s ( F(x, y) = x^2 \cdot y ). In the last couple of videos, I talked abo…
A 750-Year-Old Secret: See How Soy Sauce Is Still Made Today | Short Film Showcase
In a small coastal town in Wakayama Prefecture, Japan, the traditional streets and buildings hold one of the best-kept secrets of Japanese Gastronomy. For it was here, in the 13th century, that soy sauce, as we know it, was first established and produced.…
How the Electoral College Works
Ah, Election Day, when Americans everywhere cast their ballot for the next President of the United States. Except, not really – Americans don’t directly vote for president. So, what’s happening on election day then? It’s a bit complicated because of somet…