yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Change in period and frequency from change in angular velocity: Worked examples | Khan Academy


4m read
·Nov 11, 2024

We're told that a large tire spins with angular velocity (4 \Omega). A smaller tire spins with half the angular velocity. I'm assuming half the angular velocity of the large tire. How does the period (T_{\text{large}}) of the large tire compare with the period (T_{\text{small}}) of the small tire? So pause this video and see if you can figure that out and figure out which choice you would pick.

Ok, so the key here is to realize the connection between angular velocity and period. Instead of just blindly memorizing a formula, I always like to reason it through a little bit. We know that period is equal to—well, think about it: in order to complete one cycle, if I'm doing uniform circular motion—if I'm going in a circle around like this—in order to do one complete lap around the circle or a complete one cycle, I have to cover (2\pi) radians. So (2\pi) radians is what I need to cover, and then I divide that by my angular velocity. How fast am I going through the radians? So that's how I like to reason through this formula that connects angular velocity, or the magnitude of angular velocity, and the period.

So we can say (T_{\text{large}}) (I'll do this in two different colors). We could say (T_{\text{large}} = \frac{2\pi}{\text{angular velocity of the large tire}}). A large tire spins with angular velocity (4 \Omega), so it's going to be (T_{\text{large}} = \frac{2\pi}{4 \Omega}).

Then for (T_{\text{small}}), a smaller tire spins with half the angular velocity, so (T_{\text{small}} = \frac{2\pi}{\text{angular velocity of the small tire}}). Half of (4 \Omega) is (2 \Omega), so (T_{\text{small}} = \frac{2\pi}{2 \Omega}).

How do these two things compare? Well, it might be helpful to just simplify these expressions a little bit. So (T_{\text{large}}) (the period of the large tire) is going to be (\frac{\pi}{2 \Omega}) and (T_{\text{small}}) (the period of the smaller tire) is just going to be (\frac{\pi}{\Omega}).

So the red expression right over here is half of this blue expression. I could rewrite this as being equal to (\frac{1}{2} \times T_{\text{small}}). Now, which of these choices match up to that? Well, it is this one right over here: the period of the larger tire is going to be (\frac{1}{2}) the period of the smaller tire.

Now it's always nice, if you have the time—if you know if you're on time pressure—to just think about whether that makes sense. So a large tire spins with an angular velocity of (4 \Omega). The smaller tire spins with half the angular velocity. So if it has half the angular velocity, it's rotating half as fast. If it's rotating half as fast, it would take twice as long to complete one cycle. So the small tire is gonna take twice as long, or you could view it as the large tire takes half as long as the small tire. So that makes sense.

Let's do another example. An ice skater spins with angular velocity (2 \Omega). She brings her arms away from her body, decreasing her angular velocity to (\Omega). How does the frequency of her spin change? Once again, pause this video and see if you can figure that out on your own.

Well, let's just think about how frequency is connected to angular velocity. We already know that the period from the last question is given by (T = \frac{2\pi}{\text{angular velocity}}). If we want frequency, frequency is just the reciprocal of the period. So frequency is just going to be (\frac{\Omega}{2\pi}). This is how many cycles we can complete in a second.

At first, the ice skater spins with an angular velocity of (2 \Omega). So let's say (f_{\text{initial}} = \frac{2\Omega}{2\pi}).

Then her frequency final, after she puts her arms away from her body (decreasing her angular velocity), will be given by (f_{\text{final}}=\frac{\Omega}{2\pi}).

How do these two compare? Well, if I write her initial frequency, I could rewrite it as:
(f_{\text{initial}} = \frac{2 \times 2\Omega}{2\pi}), which is the same as (2 \times f_{\text{final}}).

Another way of thinking about it is that her frequency final, if I divide both sides by (2), is going to be equal to (\frac{1}{2}) of her initial frequency. If your initial frequency is twice your final, then your final is going to be (\frac{1}{2}) your initial.

So, how does the frequency of her spin change? Well, it looks like her frequency goes down by (\frac{1}{2}), and that makes sense. If your angular velocity is going down by half, you're rotating half as fast, and so you're going to be able to complete half as many cycles per second. So it makes sense that we are decreasing our frequency by a factor of two. It is having decreasing by a factor of two is the same thing as saying your frequency gets multiplied by (\frac{1}{2}).

More Articles

View All
IMPOSSIBLE Waterfall!: Mind Blow 11
[Music] A new toilet that can flush golf balls, and Natalie Portman’s real name is Natalie Hlag. Jackie Chan is Kung Chan, and don’t call me Carlos Ray or I’ll stick my boot up your. Vsauce! Kevin here. This is M. Blow things are not always what they see…
Free Will: be glad you don't have it
Free Will is a fantasy we should be glad we don’t have it. Um, I’m going to talk about the implications of radical Free Will and why we’re much better off without it. So, what is Free Will? Um, in this video, I’m talking specifically about a version of F…
Gravitational potential energy at large distances | AP Physics 1 | Khan Academy
Let’s do a little bit of review of potential energy and especially gravitational potential energy because in this video we’re going to get a little bit more precise. So, let’s say that I have an object here. It has a mass of m, and I were to change its p…
Comparative roles of women in Rome and Han China | World History | Khan Academy
I’m here with Iman L. Sheikh, Khan Academy’s World History fellow, and the question I have, Iman, is: history often focuses on men, but clearly women were playing a significant role. How much can we know about women, say, 2,000 years ago? When we talk ab…
Perverted Analogy Fallacy: look out for it.
So a person might make a claim like, “Uh, taxation is just because those being taxed have given, uh, implicit consent by continuing to live in a territory which is subject to the tax.” Um, and you’d like to get them to examine whether or not this idea of…
Introduction to life insurance | Insurance | Financial literacy | Khan Academy
So let’s talk a little bit about what’s probably not your favorite subject. It’s definitely not mine, and that is death. Uh, and uh, it’s not something a lot of us think about. I remember when I was a kid and I used to see these ads on TV for life insuran…