yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Change in period and frequency from change in angular velocity: Worked examples | Khan Academy


4m read
·Nov 11, 2024

We're told that a large tire spins with angular velocity (4 \Omega). A smaller tire spins with half the angular velocity. I'm assuming half the angular velocity of the large tire. How does the period (T_{\text{large}}) of the large tire compare with the period (T_{\text{small}}) of the small tire? So pause this video and see if you can figure that out and figure out which choice you would pick.

Ok, so the key here is to realize the connection between angular velocity and period. Instead of just blindly memorizing a formula, I always like to reason it through a little bit. We know that period is equal to—well, think about it: in order to complete one cycle, if I'm doing uniform circular motion—if I'm going in a circle around like this—in order to do one complete lap around the circle or a complete one cycle, I have to cover (2\pi) radians. So (2\pi) radians is what I need to cover, and then I divide that by my angular velocity. How fast am I going through the radians? So that's how I like to reason through this formula that connects angular velocity, or the magnitude of angular velocity, and the period.

So we can say (T_{\text{large}}) (I'll do this in two different colors). We could say (T_{\text{large}} = \frac{2\pi}{\text{angular velocity of the large tire}}). A large tire spins with angular velocity (4 \Omega), so it's going to be (T_{\text{large}} = \frac{2\pi}{4 \Omega}).

Then for (T_{\text{small}}), a smaller tire spins with half the angular velocity, so (T_{\text{small}} = \frac{2\pi}{\text{angular velocity of the small tire}}). Half of (4 \Omega) is (2 \Omega), so (T_{\text{small}} = \frac{2\pi}{2 \Omega}).

How do these two things compare? Well, it might be helpful to just simplify these expressions a little bit. So (T_{\text{large}}) (the period of the large tire) is going to be (\frac{\pi}{2 \Omega}) and (T_{\text{small}}) (the period of the smaller tire) is just going to be (\frac{\pi}{\Omega}).

So the red expression right over here is half of this blue expression. I could rewrite this as being equal to (\frac{1}{2} \times T_{\text{small}}). Now, which of these choices match up to that? Well, it is this one right over here: the period of the larger tire is going to be (\frac{1}{2}) the period of the smaller tire.

Now it's always nice, if you have the time—if you know if you're on time pressure—to just think about whether that makes sense. So a large tire spins with an angular velocity of (4 \Omega). The smaller tire spins with half the angular velocity. So if it has half the angular velocity, it's rotating half as fast. If it's rotating half as fast, it would take twice as long to complete one cycle. So the small tire is gonna take twice as long, or you could view it as the large tire takes half as long as the small tire. So that makes sense.

Let's do another example. An ice skater spins with angular velocity (2 \Omega). She brings her arms away from her body, decreasing her angular velocity to (\Omega). How does the frequency of her spin change? Once again, pause this video and see if you can figure that out on your own.

Well, let's just think about how frequency is connected to angular velocity. We already know that the period from the last question is given by (T = \frac{2\pi}{\text{angular velocity}}). If we want frequency, frequency is just the reciprocal of the period. So frequency is just going to be (\frac{\Omega}{2\pi}). This is how many cycles we can complete in a second.

At first, the ice skater spins with an angular velocity of (2 \Omega). So let's say (f_{\text{initial}} = \frac{2\Omega}{2\pi}).

Then her frequency final, after she puts her arms away from her body (decreasing her angular velocity), will be given by (f_{\text{final}}=\frac{\Omega}{2\pi}).

How do these two compare? Well, if I write her initial frequency, I could rewrite it as:
(f_{\text{initial}} = \frac{2 \times 2\Omega}{2\pi}), which is the same as (2 \times f_{\text{final}}).

Another way of thinking about it is that her frequency final, if I divide both sides by (2), is going to be equal to (\frac{1}{2}) of her initial frequency. If your initial frequency is twice your final, then your final is going to be (\frac{1}{2}) your initial.

So, how does the frequency of her spin change? Well, it looks like her frequency goes down by (\frac{1}{2}), and that makes sense. If your angular velocity is going down by half, you're rotating half as fast, and so you're going to be able to complete half as many cycles per second. So it makes sense that we are decreasing our frequency by a factor of two. It is having decreasing by a factor of two is the same thing as saying your frequency gets multiplied by (\frac{1}{2}).

More Articles

View All
Multiplying decimals two-step word problems | Grade 5 (TX TEKS) | Khan Academy
We’re told that Marta babysits to earn extra money. She has saved $48.25. On Saturday, she works for eight hours and earns $13.50 an hour. How much money does Marta have all together? Pause this video and see if you can work through that. All right, so …
Terms of Trade and the Gains from Trade | AP Macroeconomics | Khan Academy
Let’s imagine a very simple world, as we tend to do in economics, that has two countries that are each capable of producing either pants or shirts, or some combination. So, what we have here are the production possibility curves for each of those countri…
How Much CAFFEINE KILLS?? .. and more: DONG!
Vsauce. Are you still paying money for things you have to wait to do in real life? Well, no worries, because I’ve got more free stuff you can do online now, guys. DONG. Lots of great suggestions from WeSaucers today. First from ‘fippoolive’, Google search…
Basic derivative rules (Part 1) | Derivative rules | AP Calculus AB | Khan Academy
So these are both ways that you will see limit-based definitions of derivatives. Usually, this is if you’re thinking about the derivative at a point. Here, if you’re thinking about the derivative in general, but these are both equivalent. They’re both bas…
how to remember everything you read
This video is sponsored by Curiosity Stream. Get access to my streaming service Nebula when you sign up for Curiosity Stream using the link down in the description below. [Music] Have you ever experienced this before? You like to read books here and the…
15 Reasons Why Getting Rich is Easy
The world gets a new millionaire every 21 seconds and one new billionaire every single day. By the end of this video, you’ll understand why so many people are becoming rich and learn how to do it yourself. Here’s 15 reasons why getting rich is super easy.…