yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying and dividing by powers of 10


3m read
·Nov 11, 2024

In another video, we introduce ourselves to the idea of powers of 10. We saw that if I were to just say 10 to the first power, that means that we're just really just going to take 1.

If we have 10 to the second power, that means that we're going to take two tens, so a 10 and a 10, and we're going to multiply them. So that's going to be 100. If we take 10 to the third power, that's going to be three tens multiplied together, which is equal to one thousand, which is also one followed by three zeros.

So you're already starting to see a pattern. What we're going to do in this video is think about patterns when we multiply arbitrary things or divide our very things by powers of ten.

So let's start with a number. Let's say I will start with 2.3. And let's first just multiply it by 10 to the first power. Well, that's the same thing as just multiplying it by 10. We've seen already when you multiply by 10, you shift all the digits one place to the left.

So the two, which is in the ones place, will end up in the tens place, and then three, which is in the tenths place, will end up in the ones place. So this is just going to be equal to 23. And it's always good to do a little bit of a reality check. If I just had two and if I were to multiply it by 10, you'd say, "Okay, that's about 20." So it makes sense that 2.3 times 10 is 23.

But let's keep going. Now let's multiply 2.3 not by 10 to the first power, which is just 10, but let's multiply it times 10 to the second power. What is that going to be? Pause this video and see if you can figure that out.

All right, well 10 to the second power, we already know that's equal to 100. And so when you multiply by a hundred, or you multiply by ten twice, you're just going to shift every digit two places to the left. So let me draw some places here.

So the thing that is in the ones place will go to the hundreds place, and the thing that is in the tenths place will go to the tens place. And so this two will now be two hundreds. This three tenths will now be three tens, and we now have zero ones.

And then if we were to multiply by ten again, so if we were to say 2.3 times 10 to the third power, well then we're going to shift everything three places to the left. 10 to the third power, this is the same thing as multiplying by one thousand.

So 2.3 times 10 to the third, the two is going to be shifted three places to the left. So the two is going to become two thousand, which makes sense. So it's going to be two thousand. The three tenths is going to shift two places to the left, so it's going to be three hundred, and then we now have zero tens and zero ones.

So the pattern that you've probably seen is if you multiply a number times 10 to some power, you are just shifting the digits to the left by that power.

And if we divide by a power of 10, the same thing would happen, but we would now be shifting our digits places to the right. So for example, what is 2.3 divided by 10 to the first power? Pause this video and try to figure that out.

Well, 10 to the first power is the same thing as 10. So when we divide by 10, all of our digits are just going to shift one place to the right. So this two is going to end up in the tenths place, and the three is going to end up in the hundredths place. So this is going to give us 0.23.

Two is now in the tenths; three is now in the hundredths. But we could keep going. What if we were to say 2.3 divided by 10 to the second power? Pause this video, try to figure out what that is.

Well, in this situation, we are going to shift all the digits two places to the right. So let me put my places here. So that's the ones, tenths, hundredths, thousandths.

And so the thing that's in the ones place is two; it won't just go to the tenths. It'll go to the hundredths place, which you don't quite see here; it's right over there. So the 2 is going to show up here, and then the 3 is going to shift 2 places to the right, so it's going to end up there, and we have 0 ones and we have 0 tens.

So you're probably already seeing the pattern here. Again, whatever the exponent is, if you're dividing by 10 to that power, you're going to shift that power, that exponent, that many times. You're going to shift the digit that many places to the right.

More Articles

View All
To everyone wondering “When the Real Estate market will crash??” - my prediction
So basically you’re getting these people with big down payments who are making a lot of money, who can afford these houses, who are buying; this is hardly a bubble, and this is very sustainable long term because none of these people are ever gonna let the…
Light Painting With a Frisbee - Pre-Smarter Every Day
Hey, it’s me, Destin. We like to do a lot of weird things with our cameras. So, one thing I was going to show you is how to do some real neat things with open-shutter photography. Basically, you open the shutter for an extended period of time, and then yo…
Finding height of a parallelogram
The parallelogram shown below has an area of 24 units squared or square units. Find the missing height. So, here’s the parallelogram. This side has length six, this side has length five, and we want to find the missing height. They gave us the area, so p…
Estimating multi-digit multiplication word problems | Grade 5 (TX TEKS) | Khan Academy
We’re told results from a survey showed that 2,138 people took photos with the camera when on vacation. About 15 times as many people took photos with their phone. About how many people took photos with their phone? So pause this video and take a shot at …
Writing proportional equations | Rates & proportional relationships | 7th grade | Khan Academy
We’re told that Justin runs at a constant rate, traveling 17 kilometers in two hours. Write an equation that shows the relationship between the distance he runs, ( d ), in kilometers and the time he spends running, ( h ), in hours. So pause this video and…
Starship | Fifth Flight Test
Attention all flight crew members. This is the final go/no-go poll for operations. Raptor one. Raptor one, let’s go. Raptor two, go. Stage one, go. Stage two, go. Flight director is go for launch. We have lift-off! [Music] Vehicles pitching. [Music] Do…