yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphical limit where function undefined


2m read
·Nov 11, 2024

So we have the graph of ( y = f(x) ) right over here. What we want to do is figure out the limit of ( f(x) ) as ( x ) approaches -4. So, what does that mean?

Well, a limit is saying, “What is my function approaching as the input of that function approaches, in this case, -4?” As the input approaches a value, and as we see in this example, the function doesn't necessarily have to be even defined at that value. We can see ( f(4) ), you go to ( x ) at -4, and you see that ( f(4) ) is undefined. So this is not defined, but as we'll see, even though the function isn't defined there, the limit might be defined there.

Actually, it could go the other way around; sometimes a function is defined there, but the limit is not, and we'll see that in future videos. But let's just get an understanding here of what's going on as ( x ) approaches -4 from values greater than -4 and from values less than -4.

Well, let's first think about values greater than -4. So when ( x ) is -1, this is ( f(-1) ). This is ( f(-2) ). This is ( f(-3) ). This is ( f(-3.5) ). This is ( f(-3.9) ). This is ( f(-3.99) ). This is ( f(-4.0001) ). You can see the value of our function, as ( x ) gets closer and closer to -4 from values greater than -4, seems to be approaching 6.

Let’s see if that's true from the other direction, some from values less than -4. So this is ( f(-7) ). This is ( f(-5) ). This is ( f(-4.5) ). This is ( f(-4.1) ). This is ( f(-4.01) ). It looks like it's getting awfully close to a little bit more than 6. So it seems, as we get closer and closer to -4, the value of our function is approaching positive 6.

More Articles

View All
Panda School: (EXCLUSIVE) How the National Zoo Trains Its Panda Cub | National Geographic
I’m one of a very select group of people to get to interact with this animal, and I don’t take that for granted. It’s really cool for me to get to do something like that. Beibei is just absolutely a joy to work with. There is something about him; he’s so …
3 Similarities Between Buddhism & Stoicism
As some people in the comment section have already pointed out, Buddhism and Stoicism are actually quite alike. This is quite surprising because Stoicism was founded in the Greek city of Athens while Buddhism originates from India. Although there’s no his…
Virality and network effects drive organic growth.
The best consumer companies incorporate both virality and network effect, which are different concepts but very closely related, in order to grow their user base organically. Virality is the idea that one user using your product introduces it to other us…
Insurance terminology | Insurance | Financial Literacy | Khan Academy
Now let’s talk about some of the words you’re likely to hear if you’re dealing with insurance. So the first one is a premium, or an insurance premium, and that’s really just what you’re paying in order to get the insurance. So if you pay, let’s say, 200 …
United States v. Lopez | US government and civics | Khan Academy
What we’re going to do in this video is talk about a relatively recent U.S. Supreme Court case, and this is the United States versus Lopez. The decision was made in 1995, and this is significant because many of the cases we have talked about are things th…
Worked example: Differentiating related functions | AP Calculus AB | Khan Academy
The differentiable functions X and Y are related by the following equation: the sine of X plus cosine of Y is equal to square root of 2. They also tell us that the derivative of X with respect to T is equal to 5. They also ask us to find the derivative of…