yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphical limit where function undefined


2m read
·Nov 11, 2024

So we have the graph of ( y = f(x) ) right over here. What we want to do is figure out the limit of ( f(x) ) as ( x ) approaches -4. So, what does that mean?

Well, a limit is saying, “What is my function approaching as the input of that function approaches, in this case, -4?” As the input approaches a value, and as we see in this example, the function doesn't necessarily have to be even defined at that value. We can see ( f(4) ), you go to ( x ) at -4, and you see that ( f(4) ) is undefined. So this is not defined, but as we'll see, even though the function isn't defined there, the limit might be defined there.

Actually, it could go the other way around; sometimes a function is defined there, but the limit is not, and we'll see that in future videos. But let's just get an understanding here of what's going on as ( x ) approaches -4 from values greater than -4 and from values less than -4.

Well, let's first think about values greater than -4. So when ( x ) is -1, this is ( f(-1) ). This is ( f(-2) ). This is ( f(-3) ). This is ( f(-3.5) ). This is ( f(-3.9) ). This is ( f(-3.99) ). This is ( f(-4.0001) ). You can see the value of our function, as ( x ) gets closer and closer to -4 from values greater than -4, seems to be approaching 6.

Let’s see if that's true from the other direction, some from values less than -4. So this is ( f(-7) ). This is ( f(-5) ). This is ( f(-4.5) ). This is ( f(-4.1) ). This is ( f(-4.01) ). It looks like it's getting awfully close to a little bit more than 6. So it seems, as we get closer and closer to -4, the value of our function is approaching positive 6.

More Articles

View All
Djokovic Unmasked
The number four seed Meritt Saffin of Russia against a qualifier Novak Jovic of Serbia and Montenegro accompanied out for his big moment by Paul McNamara. There’ll be a few butterflies in his tummy as Jovic makes his entry onto Rod Laver Arena at just 17 …
Integration using completing the square and the derivative of arctan(x) | Khan Academy
All right, let’s see if we can find the indefinite integral of ( \frac{1}{5x^2 - 30x + 65} \, dx ). Pause this video and see if you can figure it out. All right, so this is going to be an interesting one. It’ll be a little bit hairy, but we’re going to w…
Worked example: using recursive formula for arithmetic sequence | High School Math | Khan Academy
We are told b of 1 is equal to negative 7, and b of n is equal to b of n minus 1 plus 12. They’re asking us to find the fourth term in the sequence. So, what we have up here, which you could use a function definition, it’s really defining the terms of a s…
Federal and state powers and the Tenth and Fourteenth Amendments | Khan Academy
What we’re going to do in this video is talk a little bit more about federal powers versus state powers. As we’ve mentioned in other videos, this is a very relevant topic because even today you’ll have supreme court decisions being decided based on citing…
Introduction to adding decimals tenths
In this video, we’re going to introduce ourselves to the idea of adding decimals, and I encourage you, as we work through these problems, to keep pausing the video and seeing if you can think about it on your own before we work through it together. We’re …
15 Types Of Mindset
They say mindset over everything, but the truth is, mindset alone isn’t going to get you that far. Plus, not all mindsets are created equally. A mindset is a set of beliefs that govern your outlook on life. It influences your decision-making, how you perc…