yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphical limit where function undefined


2m read
·Nov 11, 2024

So we have the graph of ( y = f(x) ) right over here. What we want to do is figure out the limit of ( f(x) ) as ( x ) approaches -4. So, what does that mean?

Well, a limit is saying, “What is my function approaching as the input of that function approaches, in this case, -4?” As the input approaches a value, and as we see in this example, the function doesn't necessarily have to be even defined at that value. We can see ( f(4) ), you go to ( x ) at -4, and you see that ( f(4) ) is undefined. So this is not defined, but as we'll see, even though the function isn't defined there, the limit might be defined there.

Actually, it could go the other way around; sometimes a function is defined there, but the limit is not, and we'll see that in future videos. But let's just get an understanding here of what's going on as ( x ) approaches -4 from values greater than -4 and from values less than -4.

Well, let's first think about values greater than -4. So when ( x ) is -1, this is ( f(-1) ). This is ( f(-2) ). This is ( f(-3) ). This is ( f(-3.5) ). This is ( f(-3.9) ). This is ( f(-3.99) ). This is ( f(-4.0001) ). You can see the value of our function, as ( x ) gets closer and closer to -4 from values greater than -4, seems to be approaching 6.

Let’s see if that's true from the other direction, some from values less than -4. So this is ( f(-7) ). This is ( f(-5) ). This is ( f(-4.5) ). This is ( f(-4.1) ). This is ( f(-4.01) ). It looks like it's getting awfully close to a little bit more than 6. So it seems, as we get closer and closer to -4, the value of our function is approaching positive 6.

More Articles

View All
This Is A Light-Nanosecond!
I trimmed my beard yesterday, so I’m feeling a bit like a baby today. But look at the trimmings! Specifically this one that is 2.4 fortnits worth of beard growth. How do I know? Well, because of this tool I made. This about 5 years ago to free people from…
Example: Graphing y=3⋅sin(½⋅x)-2 | Trigonometry | Algebra 2 | Khan Academy
So we’re asked to graph ( y ) is equal to three times sine of one half ( x ) minus two in the interactive widget. And this is the interactive widget that you would find on Khan Academy. It first bears mentioning how this widget works. So this point right …
Meet One of the Last Elevator Operators in Los Angeles | Short Film Showcase
[Music] I love classic movies. H. Bard, Gregory Peck, all those old-timers. In other words, my prime time was the ‘50s. [Music] My mother used to take us to the shopping malls and the big stores. I saw these old-timers doing the elevators. I observed them…
First-order reactions | Kinetics | AP Chemistry | Khan Academy
Let’s say we have a hypothetical reaction where reactant A turns into products, and that the reaction is first order with respect to A. If the reaction is first order with respect to reactant A, for the rate law we can write that the rate of the reaction …
"Why I Started MINING My Own BITCOIN!" (Millionaire Bitcoin Advice) | Kevin O'Leary
We don’t think you should own coin made in China. I said the only way I can possibly not own kind of China coin is to make it myself. So, new game plan: every coin I’m going to own, I’m going to know where it came from, when it was created, and it’s goin…
Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy
Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables. How many trial…