yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What does the world's largest machine do? - Henry Richardson


3m read
·Nov 8, 2024

On February 7th, 1967, Homer Loutzenheuser flipped a switch in Nebraska and realized a dream more than five decades in the making. The power grids of the United States joined together, forming one interconnected machine stretching coast to coast.

Today, the US power grid is the world's largest machine. It contains more than 7,300 electricity-generating plants, linked by some 11 million kilometers of powerlines, transformers and substations. Power grids span Earth’s continents, transmitting electricity around the clock.

They’re massive feats of engineering— but their functioning depends on a delicate balance. Their components must always work in unison, maintain a constant frequency throughout the grid, and match energy supply with demand. If there's too much electricity in the system, you get unsafe power spikes that can overheat and damage equipment. Too little electricity and you get blackouts.

So, to strike this balance, power grid operators monitor the grid from sophisticated control centers. They forecast energy demand and adjust which power plants are active, signaling them to turn their output up or down to precisely meet current demand. By considering factors like the availability and cost of energy resources, grid operators create a “dispatch curve,” which maps out the order in which energy sources will be used.

The grid defaults to using energy from the start of the curve first. Usually, the resources are ordered by price. Those at the start tend to be renewables because they have much lower production costs. Some grids, like those in Iceland and Costa Rica, run on more than 98% clean energy.

But most dispatch curves contain more of a mix of carbon-free and carbon-emitting energy sources. This means that where your electricity is coming from— and how clean it is— varies throughout the day— as often as every few minutes. Take the state of Kansas. Despite having plentiful wind resources, it regularly relies on carbon-emitting power plants.

This is because wind energy is especially plentiful at night. But, this is also when there’s lower demand. So, Kansas’s wind energy is actually regularly disposed of to prevent excess electricity from damaging the grid. And comparable scenarios add up to a big problem worldwide.

Thankfully, dependence on renewables is rising. But power grids are often unable to make full use of them. Many simply weren't designed around intermittent energy sources and can't store large amounts of electricity. Researchers are experimenting with unique storage solutions. However, this will take time and substantial investment.

But hope is not lost. We have the opportunity to work with our existing power grids in a new way: by shifting some of our energy use to the times when there’s clean electricity to spare. Leaning into this concept, called “load flexibility,” we can help flatten the peaks in demand, which will place less stress on the grid and reduce the need for non-renewables.

So researchers are developing automated emissions reduction technologies that tap into energy use data and ensure that devices get electricity from the grid at the cleanest times. In fact, smart devices like this already exist.

So, how big an effect could they have? If smart technologies like air conditioners, water heaters, and electric vehicle chargers were implemented across the Texas power grid, the state’s emissions could decrease by around 20%.

In other words, simply coordinating when certain devices tap into the grid could translate to 6 million fewer tons of carbon released into the atmosphere annually from Texas alone. Now, imagine what this could look like on a global scale.

More Articles

View All
Volume with cross sections: intro | Applications of integration | AP Calculus AB | Khan Academy
You are likely already familiar with finding the area between curves, and in fact, if you’re not, I encourage you to review that on Khan Academy. For example, we could find this yellow area using a definite integral. But what we’re going to do in this vi…
First and secondhand accounts | Reading | Khan Academy
Hello readers! I just got back from the library with these books. Oh, big surprise, you say? I went to the library! I found two books. No, I get it, but these books will help us talk about the difference between a first and second-hand account. You see, …
Ireland’s Underwater World | National Geographic
[Music] [Applause] [Music] The first time I saw it, I just thought, “Oh, how my father would have loved this.” Growing up, I was mesmerized by Cousteau films from the underwater world, and I thought, “Well, that couldn’t be Ireland; that must be some exot…
These Divers Search For Slave Shipwrecks and Discover Their Ancestors | National Geographic
I am a light in the bottom of the ocean. [Music] Buried in the silence of years, I am the lights of the spirits. [Music] I often think of the middle passage as the origin story for Africans in the Americas during that transatlantic slave trade period. We …
Fisherman With No Fish | Years of Living Dangerously
Through frequent dive trips to Appo Island, Renee has befriended many of the locals. Come over here, John Zenan is a third-generation fisherman who has spent his entire life on the island, living off its resources. He and his son Jory make daily trips to …
Perverted Analogy Fallacy: look out for it.
So a person might make a claim like, “Uh, taxation is just because those being taxed have given, uh, implicit consent by continuing to live in a territory which is subject to the tax.” Um, and you’d like to get them to examine whether or not this idea of…