yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling with basic exponential function


2m read
·Nov 11, 2024

There are 170 deer on a reservation. The deer population is increasing at a rate of 30% per year.

Write a function that gives the deer population P of t on the reservation T years from now.

All right, let's think about this. And like always, pause this video and see if you can work it out on your own.

But let's think about what P of 0 is. P of 0, this is going to be the initial population of deer, the population at time zero. Well, we know that that's going to be the 170 deer that we start on the reservation.

Now let's think about what P of 1 is. What's going to be the population after one year? What's going to be our original population? 170. But that increases at a rate of 30% per year. So it's going to be 170 plus another 30% of 170.

So I could write that as 30% times 170, or I could write this as 170 + 0.3 * 170. 30% as a decimal is the same thing as 30 hundreds or 3/10. Or I could write this as, if I factor out a 170, I would get 170 times 1 + 0.3, which is the same thing as 170 times 1.03.

And this is a really good thing to take a hard look at because you'll see it a lot when we're growing by a certain rate, when we're dealing with what turns out to be exponential functions.

If we are growing, oh, I almost made a mistake there. It's 1.3, almost. So here you go, 1.3. 1 plus 0.3 is 1.3.

So once again, take a hard look at this right over here because this is going to be something that you see a lot with exponential functions. When you grow by 30%, that means you keep your 100% that you had before, and then you add another 30%.

And so you would multiply your original quantity by 130%. And 130% is the same thing as 1.3. So if you are growing by 30%, you are growing by 3/10. You would multiply your initial quantity by 1.3.

So let's use that idea to keep going.

So what is the population after 2 years? Well, you would start that second year with the population at the end of one year. So it's going to be that 170 * 1.3, and then over that year, you're going to grow by another 30%.

So if you're going to grow by another 30%, that's equivalent to multiplying by 1.3 again. Or you could say that this is equal to 170 * 1.3 to the second power.

And so I think you see where this is going. If we wanted to write a general P of T, so if we just want to write a general P of T, it's going to be whatever we started with, 170, and we're going to multiply that by 1.3 however many times, however many years have gone by, so to the T power.

Because for every year we grow by 30%, which is equivalent mathematically to multiplying by 1.3. So after 100 years, it would be 170 * 1.3 to the 100th power.

More Articles

View All
Meet the 'Blood Bikers' Who Save Lives in the U.K. | National Geographic
[Music] It would be totally unnatural for you not to think about what has happened to the patients, but the job may well have changed the course of somebody else’s. [Music] The evening starts at about 7:00 p.m. for us. Hello, the controller would ring yo…
Why Are White Shark Attacks on the Rise? | SharkFest
[dramatic music] NARRATOR: Great whites are the most feared predator in the ocean. They typically hunt large mammals, like seals, sea lions, and whales. But they are also responsible for more attacks on humans than any other shark species. And that’s not…
Stoicism & Buddhism Similarities, Stoicism As A Religion & More! | Q&A #2 | April 2019
Hello everyone! Welcome to the second edition of the monthly Idol Ganger Q&A. Like last month, I’ve searched the comments for questions and interesting remarks that I will answer and talk about a bit more. This is a public video in which I will touch …
Fat Tuna Hooks Up | Wicked Tuna | National Geographic
I want to move that one to that rod holder there too. Might as well just have it there. Well, we’re down here in Chatham. We’ve got a bunch of boats with us. We have T.J. from Hot Tuna. We got Jack on Time Flies and Paul on Wicked Pissah. So there’s a bu…
The HIDDEN COST of buying Real Estate…
What’s up you guys, it’s Graham here. So here’s a topic that very few people cover when it comes to buying or investing in real estate, myself included. I’ve been making videos for a year and a half now, and I have yet to cover this topic even though it’s…
Steve Varsano: Jets, Current Market Affairs & Industry Trends
Hi, I’m Steve Varsano. I’m the founder of the jet business here in London, and I’m about to do an interview with a business channel in Germany to talk about the current situation of the corporate jet industry. So, I suppose a good place to start is Acade…