yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling with basic exponential function


2m read
·Nov 11, 2024

There are 170 deer on a reservation. The deer population is increasing at a rate of 30% per year.

Write a function that gives the deer population P of t on the reservation T years from now.

All right, let's think about this. And like always, pause this video and see if you can work it out on your own.

But let's think about what P of 0 is. P of 0, this is going to be the initial population of deer, the population at time zero. Well, we know that that's going to be the 170 deer that we start on the reservation.

Now let's think about what P of 1 is. What's going to be the population after one year? What's going to be our original population? 170. But that increases at a rate of 30% per year. So it's going to be 170 plus another 30% of 170.

So I could write that as 30% times 170, or I could write this as 170 + 0.3 * 170. 30% as a decimal is the same thing as 30 hundreds or 3/10. Or I could write this as, if I factor out a 170, I would get 170 times 1 + 0.3, which is the same thing as 170 times 1.03.

And this is a really good thing to take a hard look at because you'll see it a lot when we're growing by a certain rate, when we're dealing with what turns out to be exponential functions.

If we are growing, oh, I almost made a mistake there. It's 1.3, almost. So here you go, 1.3. 1 plus 0.3 is 1.3.

So once again, take a hard look at this right over here because this is going to be something that you see a lot with exponential functions. When you grow by 30%, that means you keep your 100% that you had before, and then you add another 30%.

And so you would multiply your original quantity by 130%. And 130% is the same thing as 1.3. So if you are growing by 30%, you are growing by 3/10. You would multiply your initial quantity by 1.3.

So let's use that idea to keep going.

So what is the population after 2 years? Well, you would start that second year with the population at the end of one year. So it's going to be that 170 * 1.3, and then over that year, you're going to grow by another 30%.

So if you're going to grow by another 30%, that's equivalent to multiplying by 1.3 again. Or you could say that this is equal to 170 * 1.3 to the second power.

And so I think you see where this is going. If we wanted to write a general P of T, so if we just want to write a general P of T, it's going to be whatever we started with, 170, and we're going to multiply that by 1.3 however many times, however many years have gone by, so to the T power.

Because for every year we grow by 30%, which is equivalent mathematically to multiplying by 1.3. So after 100 years, it would be 170 * 1.3 to the 100th power.

More Articles

View All
I found the MOST PROFITABLE Savings Accounts (It’s not Robinhood)
What’s up, you guys? It’s Graham here. So, after all the popularity revolving around Robinhood’s 3% checking and savings accounts, and all the excitement and hysteria revolving around that, and everybody losing their minds, and also issues with the SIPC,…
Extremophiles 101 | National Geographic
[Narrator] Intense heat, freezing cold, high acidity, and radioactivity. These harsh environments don’t seem hospitable for life, but some organisms not only survive but thrive under such extreme conditions. The name extremophile means extreme lover. Th…
How did they actually take this picture? (Very Long Baseline Interferometry)
This video is sponsored by KiwiCo, more about them at the end of the show. This is a picture of the supermassive black hole at the center of our Milky Way galaxy known as Sagittarius A*. The black hole itself doesn’t emit light, so what we’re seeing is th…
Personal Pronouns | The Parts of Speech | Grammar | Khan Academy
Hello grammarians! Let’s talk about personal pronouns. But first, let me lay some sentences on you. Jake and I baked a loaf of bread. We baked a loaf of bread. You can learn anything! My friends are cool. They are cool. Now, I’m gonna circle a few of the…
Factory to the World | Years of Living Dangerously
[music playing] SIGOURNEY WEAVER (VOICEOVER): China has changed a lot since I first came here in the late ‘70s. What used to be sleepy villages are now thriving mega cities. Back then, China’s most valued asset was cheap labor, and so they became a facto…
2019 Berkshire Hathaway Annual Meeting (Full Version)
Thank you, good morning and welcome to Berkshire Hathaway. For those of you who have come from out of state, welcome to Omaha. The city is delighted to have you here for this event. For those of you who came from outside of the country, welcome to the Un…