yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling with basic exponential function


2m read
·Nov 11, 2024

There are 170 deer on a reservation. The deer population is increasing at a rate of 30% per year.

Write a function that gives the deer population P of t on the reservation T years from now.

All right, let's think about this. And like always, pause this video and see if you can work it out on your own.

But let's think about what P of 0 is. P of 0, this is going to be the initial population of deer, the population at time zero. Well, we know that that's going to be the 170 deer that we start on the reservation.

Now let's think about what P of 1 is. What's going to be the population after one year? What's going to be our original population? 170. But that increases at a rate of 30% per year. So it's going to be 170 plus another 30% of 170.

So I could write that as 30% times 170, or I could write this as 170 + 0.3 * 170. 30% as a decimal is the same thing as 30 hundreds or 3/10. Or I could write this as, if I factor out a 170, I would get 170 times 1 + 0.3, which is the same thing as 170 times 1.03.

And this is a really good thing to take a hard look at because you'll see it a lot when we're growing by a certain rate, when we're dealing with what turns out to be exponential functions.

If we are growing, oh, I almost made a mistake there. It's 1.3, almost. So here you go, 1.3. 1 plus 0.3 is 1.3.

So once again, take a hard look at this right over here because this is going to be something that you see a lot with exponential functions. When you grow by 30%, that means you keep your 100% that you had before, and then you add another 30%.

And so you would multiply your original quantity by 130%. And 130% is the same thing as 1.3. So if you are growing by 30%, you are growing by 3/10. You would multiply your initial quantity by 1.3.

So let's use that idea to keep going.

So what is the population after 2 years? Well, you would start that second year with the population at the end of one year. So it's going to be that 170 * 1.3, and then over that year, you're going to grow by another 30%.

So if you're going to grow by another 30%, that's equivalent to multiplying by 1.3 again. Or you could say that this is equal to 170 * 1.3 to the second power.

And so I think you see where this is going. If we wanted to write a general P of T, so if we just want to write a general P of T, it's going to be whatever we started with, 170, and we're going to multiply that by 1.3 however many times, however many years have gone by, so to the T power.

Because for every year we grow by 30%, which is equivalent mathematically to multiplying by 1.3. So after 100 years, it would be 170 * 1.3 to the 100th power.

More Articles

View All
Photo Evidence: Glacier National Park Is Melting Away | National Geographic
All the glaciers are shrinking. In the 1800s, they were estimated to be about 150 glaciers here; however, today we only have 25 glaciers. The glaciers are measured by a number of different ways. One of the most obvious ones is using repeat photography, wh…
The Contradiction In The U.S. Constitution
Did you know that one of the greatest mathematicians of the 20th century discovered a logical contradiction in the US Constitution that, if found, could be used to legally change America’s democracy into a dictatorship? Well, he did, but we no longer kno…
Musical Fire Table!
Just press play, you mean? [Voiceover] Yeah, go for it. Whoa! [Music] Now, you may have seen a Ruben’s tube before. That’s basically a pipe with a bunch of holes in it, and you pump in a flammable gas and light it on fire, so you basically create a row …
Shells, subshells, and orbitals | Atomic structure and properties | AP Chemistry | Khan Academy
We’ve learned in other videos that the atom is, in fact, made up of even smaller constituent particles, which is pretty amazing because atoms are already unimaginably small. Those particles are the protons, which have a positive charge; you have your neut…
Warren Buffett: How the Average Person Can Become a Millionaire
So let’s not kid ourselves. The reason why we spend so much time learning about investing is to make money. Whether you’re saving up for a house or building wealth for retirement, we all have our own financial goals. In this video, Warren Buffett is going…
Describing numerical relationships with polynomial identities | Algebra 2 | Khan Academy
What we’re going to do in this video is use what we know about polynomials and how to manipulate them and what we’ve talked about of whether two polynomials are equal to each other for all values of the variable that they’re written in. So whether we’re d…