yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling with basic exponential function


2m read
·Nov 11, 2024

There are 170 deer on a reservation. The deer population is increasing at a rate of 30% per year.

Write a function that gives the deer population P of t on the reservation T years from now.

All right, let's think about this. And like always, pause this video and see if you can work it out on your own.

But let's think about what P of 0 is. P of 0, this is going to be the initial population of deer, the population at time zero. Well, we know that that's going to be the 170 deer that we start on the reservation.

Now let's think about what P of 1 is. What's going to be the population after one year? What's going to be our original population? 170. But that increases at a rate of 30% per year. So it's going to be 170 plus another 30% of 170.

So I could write that as 30% times 170, or I could write this as 170 + 0.3 * 170. 30% as a decimal is the same thing as 30 hundreds or 3/10. Or I could write this as, if I factor out a 170, I would get 170 times 1 + 0.3, which is the same thing as 170 times 1.03.

And this is a really good thing to take a hard look at because you'll see it a lot when we're growing by a certain rate, when we're dealing with what turns out to be exponential functions.

If we are growing, oh, I almost made a mistake there. It's 1.3, almost. So here you go, 1.3. 1 plus 0.3 is 1.3.

So once again, take a hard look at this right over here because this is going to be something that you see a lot with exponential functions. When you grow by 30%, that means you keep your 100% that you had before, and then you add another 30%.

And so you would multiply your original quantity by 130%. And 130% is the same thing as 1.3. So if you are growing by 30%, you are growing by 3/10. You would multiply your initial quantity by 1.3.

So let's use that idea to keep going.

So what is the population after 2 years? Well, you would start that second year with the population at the end of one year. So it's going to be that 170 * 1.3, and then over that year, you're going to grow by another 30%.

So if you're going to grow by another 30%, that's equivalent to multiplying by 1.3 again. Or you could say that this is equal to 170 * 1.3 to the second power.

And so I think you see where this is going. If we wanted to write a general P of T, so if we just want to write a general P of T, it's going to be whatever we started with, 170, and we're going to multiply that by 1.3 however many times, however many years have gone by, so to the T power.

Because for every year we grow by 30%, which is equivalent mathematically to multiplying by 1.3. So after 100 years, it would be 170 * 1.3 to the 100th power.

More Articles

View All
World's Highest Jumping Robot
This tiny robot weighs less than a tennis ball and can jump higher than anything in the world. In the competitive world of jumping robots, the previous record was 3.7 meters, enough to leap a single-story building. This jumper can reach 31 meters, higher …
How I Became Rich l #shorts
And what I remember about that experience, I wasn’t thinking about the money at all. We were competing with many companies around the world, and we were winning, and we were crushing it. So I woke up one day when the deal had closed, and I realized I’m ri…
Predicting bond type (metals vs. nonmetals) | AP Chemistry | Khan Academy
In a previous video, we introduced ourselves to the idea of bonds between atoms, and we talked about the types of bonds: ionic, covalent, and metallic. In this video, we’re going to dig a little bit deeper and talk about the types of bonds that are likely…
Andding decimals with hundredths
Let’s get some practice adding numbers that involve hundreds. So, pause this video and see if you can add these two numbers. See what you get. Alright, now let’s work through this together. Now, there’s many different ways to add decimals, and you’ll lea…
Khan Academy view of mastery learning
The terms mastery learning are used a lot these days, but I want to do a video on them because they can mean different things to different people. I want to talk about what it means, at least in a Khan Academy context. So to give us some perspective, let…
Wabi-Sabi | A Japanese Philosophy of Perfect Imperfection
The pursuit of perfection has become the norm in today’s world, where chronic dissatisfaction, burnout, depression, and anxiety reign supreme. We’ve subjected ourselves to unrealistic standards and rigorously chase an ideal that’s impossible to reach. Adv…