yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling with basic exponential function


2m read
·Nov 11, 2024

There are 170 deer on a reservation. The deer population is increasing at a rate of 30% per year.

Write a function that gives the deer population P of t on the reservation T years from now.

All right, let's think about this. And like always, pause this video and see if you can work it out on your own.

But let's think about what P of 0 is. P of 0, this is going to be the initial population of deer, the population at time zero. Well, we know that that's going to be the 170 deer that we start on the reservation.

Now let's think about what P of 1 is. What's going to be the population after one year? What's going to be our original population? 170. But that increases at a rate of 30% per year. So it's going to be 170 plus another 30% of 170.

So I could write that as 30% times 170, or I could write this as 170 + 0.3 * 170. 30% as a decimal is the same thing as 30 hundreds or 3/10. Or I could write this as, if I factor out a 170, I would get 170 times 1 + 0.3, which is the same thing as 170 times 1.03.

And this is a really good thing to take a hard look at because you'll see it a lot when we're growing by a certain rate, when we're dealing with what turns out to be exponential functions.

If we are growing, oh, I almost made a mistake there. It's 1.3, almost. So here you go, 1.3. 1 plus 0.3 is 1.3.

So once again, take a hard look at this right over here because this is going to be something that you see a lot with exponential functions. When you grow by 30%, that means you keep your 100% that you had before, and then you add another 30%.

And so you would multiply your original quantity by 130%. And 130% is the same thing as 1.3. So if you are growing by 30%, you are growing by 3/10. You would multiply your initial quantity by 1.3.

So let's use that idea to keep going.

So what is the population after 2 years? Well, you would start that second year with the population at the end of one year. So it's going to be that 170 * 1.3, and then over that year, you're going to grow by another 30%.

So if you're going to grow by another 30%, that's equivalent to multiplying by 1.3 again. Or you could say that this is equal to 170 * 1.3 to the second power.

And so I think you see where this is going. If we wanted to write a general P of T, so if we just want to write a general P of T, it's going to be whatever we started with, 170, and we're going to multiply that by 1.3 however many times, however many years have gone by, so to the T power.

Because for every year we grow by 30%, which is equivalent mathematically to multiplying by 1.3. So after 100 years, it would be 170 * 1.3 to the 100th power.

More Articles

View All
What does a Gong Sound Like when Hit with a 1189mph Baseball? - Smarter Every Day 267
[Music] Hey! It’s me, Destin. Welcome back to Smarter Every Day. We are right in the middle of a huge experiment. It’s kind of like you walked in halfway through class. It’s cool, though. There’s a couple of videos you can watch and get caught up later. B…
Worked example: Finding the formula of an ionic compound | AP Chemistry | Khan Academy
Let’s now see if we could come up with the chemical formula for the ionic compound calcium bromide. And like always, if you are inspired, pause the video and see if you could come up with it on your own. All right, so the convention is that we write the …
Indus Valley Civilization | Early Civilizations | World History | Khan Academy
As we’ve talked about in multiple videos, some of the earliest civilizations we have found have been around river valleys, and that is no coincidence. Because some of the first agriculture emerged around river valleys, and the agriculture supported higher…
Three types of sentence | Syntax | Khan Academy
Hello grammarians! Hello Paige! Hi David! So, we have three different sentence varieties that we’re going to talk about today. All right, um here are their three flavors: Flavor number one, declarative sentences; flavor number two, interrogative sentence…
"Where Love Is Illegal": Chronicling LGBT Stories of Love and Discrimination (Part 2) | Nat Geo Live
I was in Lagos, Nigeria in 2014 when I heard about five young men in the north of the country who faced the death penalty for committing gay acts. They were in the Sharia Law controlled part of the country. So I went up to see them. Fortunately, by the ti…
With Love, To The Moon
It’s night time. Work is over, dinner has been eaten, and you’re just about to go to bed. You lay down for a short while, but your mind decides it’s not done with the day just yet. You think you let ideas run their course, but you are still not tired. You…