yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling with basic exponential function


2m read
·Nov 11, 2024

There are 170 deer on a reservation. The deer population is increasing at a rate of 30% per year.

Write a function that gives the deer population P of t on the reservation T years from now.

All right, let's think about this. And like always, pause this video and see if you can work it out on your own.

But let's think about what P of 0 is. P of 0, this is going to be the initial population of deer, the population at time zero. Well, we know that that's going to be the 170 deer that we start on the reservation.

Now let's think about what P of 1 is. What's going to be the population after one year? What's going to be our original population? 170. But that increases at a rate of 30% per year. So it's going to be 170 plus another 30% of 170.

So I could write that as 30% times 170, or I could write this as 170 + 0.3 * 170. 30% as a decimal is the same thing as 30 hundreds or 3/10. Or I could write this as, if I factor out a 170, I would get 170 times 1 + 0.3, which is the same thing as 170 times 1.03.

And this is a really good thing to take a hard look at because you'll see it a lot when we're growing by a certain rate, when we're dealing with what turns out to be exponential functions.

If we are growing, oh, I almost made a mistake there. It's 1.3, almost. So here you go, 1.3. 1 plus 0.3 is 1.3.

So once again, take a hard look at this right over here because this is going to be something that you see a lot with exponential functions. When you grow by 30%, that means you keep your 100% that you had before, and then you add another 30%.

And so you would multiply your original quantity by 130%. And 130% is the same thing as 1.3. So if you are growing by 30%, you are growing by 3/10. You would multiply your initial quantity by 1.3.

So let's use that idea to keep going.

So what is the population after 2 years? Well, you would start that second year with the population at the end of one year. So it's going to be that 170 * 1.3, and then over that year, you're going to grow by another 30%.

So if you're going to grow by another 30%, that's equivalent to multiplying by 1.3 again. Or you could say that this is equal to 170 * 1.3 to the second power.

And so I think you see where this is going. If we wanted to write a general P of T, so if we just want to write a general P of T, it's going to be whatever we started with, 170, and we're going to multiply that by 1.3 however many times, however many years have gone by, so to the T power.

Because for every year we grow by 30%, which is equivalent mathematically to multiplying by 1.3. So after 100 years, it would be 170 * 1.3 to the 100th power.

More Articles

View All
Cost vs Quality in Edtech – Keith Schacht, Avichal Garg, and Geoff Ralston
A vitro you found it prep me in 2001, sold it ten years later in 2011. That was actually the year we found it. Imagine K12, the world’s first educational technology accelerator. And, Keith, you founded Mystery Science, I think in 2013. We just celebrated …
Khan Stories: Jordan
I’m Jordan. I’m a sophomore at Harvard. I’m a first generation college student. My dad works two, three jobs. My mom’s still working. My grandparents, you know, coming from Puerto Rico and that kind of thing, really not having any education. So from one,…
Self-Discipline is Freedom... From Yourself. | Why it's Important.
If you have been following this channel for a while, you might get the idea that I like structure. And I do. I love productivity, organization, order, and I try to be as disciplined as possible. When some people hear, they think that it’s boring. They equ…
Accelerate Your Career With These 15 Unbeatable Skills
What if we told you that how far you climb up the corporate ladder has nothing to do with your competency? Your boss proves it. And although you can’t fake your way all the way to the top, the majority of competent people get stuck much lower in the hiera…
Buddhism | World History | Khan Academy
We’re now going to talk about one of the most significant figures in all of human history, and that is Sedara Gotha, who would later be known as Buddha, as the Awakened One or the Enlightened One. Now, before we get into his life, let’s think about the co…
Adding 3-digit numbers (no regrouping) | 2nd grade | Khan Academy
[Voiceover] So I have two numbers here that I wanna add together. The first number is 327, and that means three hundreds. I have a three in the hundreds place. You see them right over here. You see the three hundreds, each of these big squares have a hund…