yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling with basic exponential function


2m read
·Nov 11, 2024

There are 170 deer on a reservation. The deer population is increasing at a rate of 30% per year.

Write a function that gives the deer population P of t on the reservation T years from now.

All right, let's think about this. And like always, pause this video and see if you can work it out on your own.

But let's think about what P of 0 is. P of 0, this is going to be the initial population of deer, the population at time zero. Well, we know that that's going to be the 170 deer that we start on the reservation.

Now let's think about what P of 1 is. What's going to be the population after one year? What's going to be our original population? 170. But that increases at a rate of 30% per year. So it's going to be 170 plus another 30% of 170.

So I could write that as 30% times 170, or I could write this as 170 + 0.3 * 170. 30% as a decimal is the same thing as 30 hundreds or 3/10. Or I could write this as, if I factor out a 170, I would get 170 times 1 + 0.3, which is the same thing as 170 times 1.03.

And this is a really good thing to take a hard look at because you'll see it a lot when we're growing by a certain rate, when we're dealing with what turns out to be exponential functions.

If we are growing, oh, I almost made a mistake there. It's 1.3, almost. So here you go, 1.3. 1 plus 0.3 is 1.3.

So once again, take a hard look at this right over here because this is going to be something that you see a lot with exponential functions. When you grow by 30%, that means you keep your 100% that you had before, and then you add another 30%.

And so you would multiply your original quantity by 130%. And 130% is the same thing as 1.3. So if you are growing by 30%, you are growing by 3/10. You would multiply your initial quantity by 1.3.

So let's use that idea to keep going.

So what is the population after 2 years? Well, you would start that second year with the population at the end of one year. So it's going to be that 170 * 1.3, and then over that year, you're going to grow by another 30%.

So if you're going to grow by another 30%, that's equivalent to multiplying by 1.3 again. Or you could say that this is equal to 170 * 1.3 to the second power.

And so I think you see where this is going. If we wanted to write a general P of T, so if we just want to write a general P of T, it's going to be whatever we started with, 170, and we're going to multiply that by 1.3 however many times, however many years have gone by, so to the T power.

Because for every year we grow by 30%, which is equivalent mathematically to multiplying by 1.3. So after 100 years, it would be 170 * 1.3 to the 100th power.

More Articles

View All
The 8 BEST INVESTMENTS to make RIGHT NOW
One supplies its Graham here. So I checked my analytics the other day, and as it turns out, nearly 60% of you watching are in your 20s, or you just lied to Google about your age when they asked you how old you were so you can get around the age-restricted…
Finding equivalent ratios in similar quadrilaterals | Grade 8 (TX) | Khan Academy
We are told Lucas dilated quadrilateral ABCD to create quadrilateral WXYZ. So it looks like he rotated and zoomed in or made it or expanded it to get this other quadrilateral. The fact that we used these types of transformations like a dilation and it loo…
Mars Season 2 – Trailer | National Geographic
There are other human beings on Mars now. Coexistence may prove just as challenging as it does on Earth. ELON MUSK: Mars civilization ultimately looks like an advanced version of Earth. SUSAN WISE BAUER: Industry is going to be absolutely vital to that …
Is a US Recession Really Coming Soon?
This video is sponsored by Seeking Alpha. Sign up to Seeking Alpha Premium using my link to score a 7-Day free trial and $25 off your annual subscription. Is the US really headed for a recession? A week ago, you probably saw the stock market take a decen…
Mark Wiens Goes Night Fishing and Jungle Foraging in Remote Thailand | Epic Food Journeys | Nat Geo
Nat Geo challenged me to fish and forage for a meal. So I’m in one of the most remote regions of Thailand with the Karen people, where I’ll be taking part in a special ceremony. My friend Mook will prepare a traditional Karen meal, and I can’t wait to t…
Why Do Cameras Do This? | Rolling Shutter Explained - Smarter Every Day 172
What’s up? I’m Destin. This is Smarter Every Day. Get your phone out. You see that little camera assembly there? Let’s take it out of the phone. Yep. That’s what it looks like. So here’s what we’re going to do. The first thing we’re going to do is pop th…