yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling with basic exponential function


2m read
·Nov 11, 2024

There are 170 deer on a reservation. The deer population is increasing at a rate of 30% per year.

Write a function that gives the deer population P of t on the reservation T years from now.

All right, let's think about this. And like always, pause this video and see if you can work it out on your own.

But let's think about what P of 0 is. P of 0, this is going to be the initial population of deer, the population at time zero. Well, we know that that's going to be the 170 deer that we start on the reservation.

Now let's think about what P of 1 is. What's going to be the population after one year? What's going to be our original population? 170. But that increases at a rate of 30% per year. So it's going to be 170 plus another 30% of 170.

So I could write that as 30% times 170, or I could write this as 170 + 0.3 * 170. 30% as a decimal is the same thing as 30 hundreds or 3/10. Or I could write this as, if I factor out a 170, I would get 170 times 1 + 0.3, which is the same thing as 170 times 1.03.

And this is a really good thing to take a hard look at because you'll see it a lot when we're growing by a certain rate, when we're dealing with what turns out to be exponential functions.

If we are growing, oh, I almost made a mistake there. It's 1.3, almost. So here you go, 1.3. 1 plus 0.3 is 1.3.

So once again, take a hard look at this right over here because this is going to be something that you see a lot with exponential functions. When you grow by 30%, that means you keep your 100% that you had before, and then you add another 30%.

And so you would multiply your original quantity by 130%. And 130% is the same thing as 1.3. So if you are growing by 30%, you are growing by 3/10. You would multiply your initial quantity by 1.3.

So let's use that idea to keep going.

So what is the population after 2 years? Well, you would start that second year with the population at the end of one year. So it's going to be that 170 * 1.3, and then over that year, you're going to grow by another 30%.

So if you're going to grow by another 30%, that's equivalent to multiplying by 1.3 again. Or you could say that this is equal to 170 * 1.3 to the second power.

And so I think you see where this is going. If we wanted to write a general P of T, so if we just want to write a general P of T, it's going to be whatever we started with, 170, and we're going to multiply that by 1.3 however many times, however many years have gone by, so to the T power.

Because for every year we grow by 30%, which is equivalent mathematically to multiplying by 1.3. So after 100 years, it would be 170 * 1.3 to the 100th power.

More Articles

View All
A Real Life Haptic Glove (Ready Player One Technology Today) - Smarter Every Day 190
Hey, it’s me Destin, welcome back to Smarter Every Day. I love Ready Player One. It’s a fascinating book about this virtual world called The Oasis, based here in Columbus, Ohio. If we’re ever gonna get to a virtual world, we have to have ways to interact …
World War I: Homefront | Period 7: 1890-1945 | AP US History | Khan Academy
In 1917, the United States entered World War One on the side of the Allies. After several years of neutrality, Woodrow Wilson, who was serving as president of the United States at the time, even campaigned for re-election on the slogan “He kept us out of …
What if the Moon was a Disco Ball?
Hey, Vsauce. Michael here. If we turned the Moon into a giant disco ball, day and night would not be a disco party. Instead of diffusely reflecting sunlight onto all of us, a mirror-tiled moon would reflect specularly. You would be lucky to momentarily ca…
Addition and subtraction with number lines | 2nd grade | Khan Academy
[Voiceover] Which number line shows 47 plus 22? Let’s see, in this first number line we’re starting at 47, then we add 20 to get to 67. And then we add two to get to 69. So if you add 20, and then you’re adding two, you’re adding 22. So this one seems r…
Worked example: Quotient rule with table | Derivative rules | AP Calculus AB | Khan Academy
Let F be a function such that f of 1 is equal to 3. Frime of 1 is equal to 5. Let G be the function G of x is equal to 2x cubed. Let capital F be a function defined as so capital F is defined as lowercase f of x divided by lowercase G of x. And they want …
A Growing Epidemic | Breakthrough
2014, in West Africa, the Ebola virus continues its exponential spread. Hospitals are swamped with patients, and the already weak health care infrastructure begins to collapse. Virologists from around the world come to help. Dr. Daniel Bausch, a specialis…