yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling with basic exponential function


2m read
·Nov 11, 2024

There are 170 deer on a reservation. The deer population is increasing at a rate of 30% per year.

Write a function that gives the deer population P of t on the reservation T years from now.

All right, let's think about this. And like always, pause this video and see if you can work it out on your own.

But let's think about what P of 0 is. P of 0, this is going to be the initial population of deer, the population at time zero. Well, we know that that's going to be the 170 deer that we start on the reservation.

Now let's think about what P of 1 is. What's going to be the population after one year? What's going to be our original population? 170. But that increases at a rate of 30% per year. So it's going to be 170 plus another 30% of 170.

So I could write that as 30% times 170, or I could write this as 170 + 0.3 * 170. 30% as a decimal is the same thing as 30 hundreds or 3/10. Or I could write this as, if I factor out a 170, I would get 170 times 1 + 0.3, which is the same thing as 170 times 1.03.

And this is a really good thing to take a hard look at because you'll see it a lot when we're growing by a certain rate, when we're dealing with what turns out to be exponential functions.

If we are growing, oh, I almost made a mistake there. It's 1.3, almost. So here you go, 1.3. 1 plus 0.3 is 1.3.

So once again, take a hard look at this right over here because this is going to be something that you see a lot with exponential functions. When you grow by 30%, that means you keep your 100% that you had before, and then you add another 30%.

And so you would multiply your original quantity by 130%. And 130% is the same thing as 1.3. So if you are growing by 30%, you are growing by 3/10. You would multiply your initial quantity by 1.3.

So let's use that idea to keep going.

So what is the population after 2 years? Well, you would start that second year with the population at the end of one year. So it's going to be that 170 * 1.3, and then over that year, you're going to grow by another 30%.

So if you're going to grow by another 30%, that's equivalent to multiplying by 1.3 again. Or you could say that this is equal to 170 * 1.3 to the second power.

And so I think you see where this is going. If we wanted to write a general P of T, so if we just want to write a general P of T, it's going to be whatever we started with, 170, and we're going to multiply that by 1.3 however many times, however many years have gone by, so to the T power.

Because for every year we grow by 30%, which is equivalent mathematically to multiplying by 1.3. So after 100 years, it would be 170 * 1.3 to the 100th power.

More Articles

View All
Creativity break: how do you apply creativity to biology? | High school biology | Khan Academy
[Music] [Music] One question that people ask me is, how do I apply creativity to the presentations that I give? My secret sauce is to come up with a visual image that anybody—I don’t care if you’re an adult, whether you’re a fifth grader or second grader…
Analyzing structure with linear inequalities: balls | High School Math | Khan Academy
A bag has more green balls than blue balls, and there is at least one blue ball. Let B represent the number of blue balls, and let G represent the number of green balls. Let’s compare the expressions 2B and B + G. Which statement is correct? So, they mak…
Solving equations by graphing: intro | Algebra 2 | Khan Academy
We’re told this is the graph of y is equal to three halves to the x, and that’s it right over there. Use the graph to find an approximate solution to three halves to the x is equal to five. So pause this video and try to do this on your own before we work…
Lecture 9 - How to Raise Money (Marc Andreessen, Ron Conway, Parker Conrad)
Um, but I want to start with a question for Mark and Ron, which is by far the number one question. Probably be a link answer: what do you guys decide to invest in—a founder or a company? Neither of you: no, no, no, no, you first. Um, well, we have a sli…
15 Ways Rich People Simplify Their Life for Success
With billions in assets, shareholders to answer to, and employees to consider, you’d think that rich people lead pretty complicated, tangly lives, right? But in truth, they’ve always kept it as simple as possible, and that’s how they reach those levels of…
Ask Sal Anything! Homeroom Wednesday, June 24
Hi everyone! Welcome to the homeroom livestream. Today, we’re actually just going to have an Ask Me Anything, so any questions you have for me about anything, I encourage you to put below, whether you’re watching this on Facebook or YouTube. Put this on t…