yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling with basic exponential function


2m read
·Nov 11, 2024

There are 170 deer on a reservation. The deer population is increasing at a rate of 30% per year.

Write a function that gives the deer population P of t on the reservation T years from now.

All right, let's think about this. And like always, pause this video and see if you can work it out on your own.

But let's think about what P of 0 is. P of 0, this is going to be the initial population of deer, the population at time zero. Well, we know that that's going to be the 170 deer that we start on the reservation.

Now let's think about what P of 1 is. What's going to be the population after one year? What's going to be our original population? 170. But that increases at a rate of 30% per year. So it's going to be 170 plus another 30% of 170.

So I could write that as 30% times 170, or I could write this as 170 + 0.3 * 170. 30% as a decimal is the same thing as 30 hundreds or 3/10. Or I could write this as, if I factor out a 170, I would get 170 times 1 + 0.3, which is the same thing as 170 times 1.03.

And this is a really good thing to take a hard look at because you'll see it a lot when we're growing by a certain rate, when we're dealing with what turns out to be exponential functions.

If we are growing, oh, I almost made a mistake there. It's 1.3, almost. So here you go, 1.3. 1 plus 0.3 is 1.3.

So once again, take a hard look at this right over here because this is going to be something that you see a lot with exponential functions. When you grow by 30%, that means you keep your 100% that you had before, and then you add another 30%.

And so you would multiply your original quantity by 130%. And 130% is the same thing as 1.3. So if you are growing by 30%, you are growing by 3/10. You would multiply your initial quantity by 1.3.

So let's use that idea to keep going.

So what is the population after 2 years? Well, you would start that second year with the population at the end of one year. So it's going to be that 170 * 1.3, and then over that year, you're going to grow by another 30%.

So if you're going to grow by another 30%, that's equivalent to multiplying by 1.3 again. Or you could say that this is equal to 170 * 1.3 to the second power.

And so I think you see where this is going. If we wanted to write a general P of T, so if we just want to write a general P of T, it's going to be whatever we started with, 170, and we're going to multiply that by 1.3 however many times, however many years have gone by, so to the T power.

Because for every year we grow by 30%, which is equivalent mathematically to multiplying by 1.3. So after 100 years, it would be 170 * 1.3 to the 100th power.

More Articles

View All
I Got Covid
So as you can see from the title, I got COVID. Initially, I held back from talking about this since, one, I wanted to make sure I wasn’t experiencing any long-lasting side effects before sharing my own experience, and two, I was nervous because I guess th…
An AI Primer with Wojciech Zaremba
Hey, today we have voice check Zaremba, and we’re going to talk about AI. So, Voiture, could you give us a quick background? I’m a founder at OpenAI, and I’m working on robotics. I think that deep learning and AI is a great application for robotics. Prio…
The Universe's Biggest Paradoxes
Has anyone ever accused you of acting like you’re the center of the universe? Maybe you were 10 years old, upset that your mom wouldn’t take you to buy candy, or you were so focused on an upcoming project that you totally forgot to wish your coworker cong…
What 300 DIRTY JOBS Taught Mike Rowe About TRUE SUCCESS | Kevin O'Leary
If I were in a seat, I’d be on the edge of it. All right, here we go. [Music] You are watching yet another episode of Mr. Wonderful. I’m not him; I’m just a guest. I might grow your questions; we answer them. It’s gonna be great. Hi, my name is Monty. I’…
What Now For The Higgs Boson?
We are on our way to CERN in Geneva, and this is John Mark, the cameraman. Hi! And, uh, we should be coming up on it. That’s the Dome; that’s the famous CERN Dome up ahead. This is pretty exciting! On July 4th here at CERN, a historic announcement was mad…
The Brightest Part of a Shadow is in the Middle
Where is the darkest part of a shadow? I mean, the obvious answer seems to be right in the middle. If you look closely at a shadow, as you move the object away from the wall, you notice that the shadow gets a bit fuzzy. So clearly, the edges are lighter. …