yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Horizontal tangent to implicit curve | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We're told to consider the curve given by the equation that gives this equation. It can be shown that the derivative of y with respect to x is equal to this expression, and you could figure that out with just some implicit differentiation and then solving for the derivative of y with respect to x. We've done that in other videos.

Write the equation of the horizontal line that is tangent to the curve and is above the x-axis. Pause this video and see if you can have a go at it.

So let's just make sure we're visualizing this right. So let me just draw a quick and dirty diagram. If that's my y-axis, this is my x-axis. I don't know exactly what that curve looks like, but imagine you have some type of a curve that looks something like this. Well, there would be two tangent lines that are horizontal based on how I've drawn it. One might be right over there, so it might be like there, and then another one might be maybe right over here.

They want the equation of the horizontal line that is tangent to the curve and is above the x-axis. So what do we know? What is true if this tangent line is horizontal? Well, that tells us that at this point, dy/dx is equal to zero. In fact, that would be true at both of these points. We know what dy/dx is. We know that the derivative of y with respect to x is equal to negative two times x plus three over four y to the third power for any x and y.

So when will this equal zero? Well, it's going to equal zero when our numerator is equal to zero and our denominator isn't. So when is our numerator going to be zero? When x is equal to negative three. So when x is equal to negative three, the derivative is equal to zero.

So what is going to be the corresponding y value when x is equal to negative three? And if we know that, well, this equation is just going to be y is equal to something—it's going to be that y value. Well, to figure that out, we just take this x equals negative three, substitute it back into our original equation, and then solve for y.

So let's do that. It's going to be negative three squared plus y to the fourth plus 6 times negative three is equal to 7. This is 9. This is negative 18. And so we're going to get y to the fourth minus 9 is equal to 7, or adding 9 to both sides, we get y to the fourth power is equal to 16.

And this would tell us that y is going to be equal to plus or minus 2. Well, there would be then two horizontal lines: one would be y is equal to 2, the other is y is equal to negative two. But they want us the equation of the horizontal line that is tangent to the curve and is above the x-axis. So only this one is going to be above the x-axis and we're done. It's going to be y is equal to 2.

More Articles

View All
What If Earth got Kicked Out of the Solar System? Rogue Earth
The night sky seems peaceful and orderly, but in reality, stars are careening through the galaxy at speeds of hundreds of thousands of kilometers per hour, not bound by static formations but changing neighborhoods constantly. Fortunately, space is big, an…
The Assassin's Water Bottle
This water bottle allows you to carry two different liquids and dispense them from the same nozzle separately or together at your command. It’s a collaboration between myself and Steve Mold that you can pre-order now. It all started when Steve and I were…
Laws & Causes
[Music] Hey, Vsauce. Michael here. Do you want to see the most illegal thing I own? It’s a penny from 2027. That’s right, it is a piece of counterfeit US currency. Or is it? There are no 2027 pennies today, which means that this is a counterfeit of an ori…
Safari Live - Day 284 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Hello, hello! Jambo, jambo, and a very good afternoon from the Masai Mara Triangle in Kenya! Welcome to our drive of what w…
Why are snowflakes like this?
[Ken] Now, I’m gonna turn on 2000 volts. [Derek] What? And this is the first step in creating snowflakes in the lab. This is totally wild. What? Crazy, huh? The tips of those needles are like a hundred nanometers in diameter. [Derek] That is so wild.…
Cathie Wood's fund is collapsing | Here's what stocks she owns
Kathy Wood became a household name in 2020 and 2021 by making her investors billions of dollars. She was even able to outperform legendary investor Warren Buffett. Her flagship Arc Innovation fund returned a staggering 152% in 2020. Compare that to Warren…