yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Area of a circle | Perimeter, area, and volume | Geometry | Khan Academy


3m read
·Nov 11, 2024

  • [Teacher] A candy machine creates small chocolate wafers in the shape of circular discs. The diameter, the diameter of each wafer is 16 millimeters. What is the area of each candy?

So, the candy, they say it's the shape of circular discs. And they tell us that the diameter of each wafer is 16 millimeters. So if I draw a line across the circle that goes through the center, the length of that line all the way across the circle through the center is 16 millimeters.

So let me write that, so diameter, the diameter here is 16 millimeters and they want us to figure out the area, the area of the surface of this candy. Or essentially the area of this circle. And so when we think about area, we know that the area of a circle, the area of a circle is equal to pi times the radius of the circle squared.

Times the radius of the circle squared, and you say, well they gave us the diameter, what is the radius? Well, you might remember the radius is half of diameter, so distance from the center of the circle to the outside, to the boundary of the circle.

So it would be this distance right over here, which is exactly half of the diameter. So, it would be eight millimeters. So, where we see the radius, we could put eight millimeters.

So the area is going to be equal to pi times eight millimeters squared, which would be 64, 64 square, 64 square millimeters. And typically, this is written with pi after the 64, so you might often see it as this is equal to 64 pi, 64 pi millimeters squared, millimeters squared, millimeters squared.

Now, this is the answer, 64 pi millimeters squared, but sometimes it's not so satisfying to just leave this pi, you might say, "Well, I wanna get an estimate of what number this is close to, I wanna decimal representation of this."

And so we can start to use approximate values of pi. So, the most rough approximate value that tends to be used is saying that pi, a very rough approximation is equal to 3.14. So in that case, we could say that this is going to be equal to 64, 64 times 3.14 millimeters, millimeters squared and we can get our calculator to figure out what this will be in decimal form.

So we have 64 times 3.14 gives us 200.96. So we could say that the area is approximately equal to, approximately equal to 200.96 square millimeters.

Now, if we wanna get a more accurate representation of this, pi actually just keeps going on and on and on forever, we could use the calculator's internal representation of pi. In which case we'll say 64 times and then we have to look for the pi in the calculator, it's up here in this yellow so I'll do this little second function, get the pi there, every calculator will be a little different.

But 64 times pi, now we're going to use the calculator's internal approximation of pi, which is going to be more precise than what I had in the last one and you get 201, so let me put it over here so I can write it down, so a more precise is 201, and I'll round, I'll round to the nearest, I'll round to the nearest hundredth so you get 201.06, so 201, so more precise is 201.06 square millimeters.

So this is closer to the actual answer 'cause a calculator's representation is more precise than this very rough approximation of what pi is.

More Articles

View All
How this 96-year-old Secretary grew a $9,000,000 Fortune
What’s up you guys? It’s Graham here. So, I want to share a really cool story written by Corey Kildonan of the New York Times. It’s a great example of what can happen when you live frugally and invest consistently while still working a very modest nine-to…
Fool's Gold (Clip) | To Catch a Smuggler | National Geographic
I’m going to need that box that’s in the back. We’re here to look at a box that CBP’s National Targeting Center targeted this particular shipment. The shipper is an entity that’s known to us; they’re a previous offender for smuggled artifacts coming into …
Interpreting the meaning of the derivative in context | AP Calculus AB | Khan Academy
We’re told that Eddie drove from New York City to Philadelphia. The function ( d ) gives the total distance Eddie has driven in kilometers ( t ) hours after he left. What is the best interpretation for the following statement: ( d’ ) of 2 is equal to 100?…
Infinite limits and asymptotes | Limits and continuity | AP Calculus AB | Khan Academy
What we’re going to do in this video is use the online graphing calculator Desmos and explore the relationship between vertical and horizontal asymptotes and think about how they relate to what we know about limits. So let’s first graph ( \frac{2}{x - 1}…
NEW IRS TAX FOR VENMO AND PAYPAL USERS! #shorts
So there’s a lot of confusion about a new IRS tax code that requires you to report your Venmo and PayPal transactions to the IRS if you receive more than $600 a year beginning on January 1st. But here’s what most people are not telling you: even though t…
Spend a Day With the World’s Only Grass-Eating Monkeys | National Geographic
A day in the life for all geladas begins on the edges of the cliff. In the morning, they wake up with the sunrise and slowly ascend kind of to the edge of the high plateau. They’ll spend an hour, or maybe more, socializing with each other—grooming, havin…