yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Differentiability at a point: algebraic (function is differentiable) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Is the function given below continuous differentiable at x = 3? And they've defined it piecewise, and we have some choices: continuous, not differentiable, differentiable, not continuous, both continuous and differentiable, neither continuous nor differentiable.

Now, one of these we can knock out right from the get-go: in order to be differentiable, you need to be continuous there. So, you cannot have differentiable but not continuous, so let's just rule that one out.

Now, let's think about continuity. If it isn't continuous, then it's not going to be differentiable. So, let's think about it a little bit. In order to be continuous, f(3) needs to be equal to the limit of f(x) as x approaches 3. Now, what is f(3)? Well, let's see. We fall into this case right over here because x is equal to 3. So, 6 * 3 is 18, and 18 - 9 is 9, so this is 9.

The limit of f(x) as x approaches 3 needs to be equal to 9. Let's first think about the limit as we approach from the left-hand side. The limit as x approaches 3 from the left-hand side of f(x): well, when x is less than 3, we fall into this case, so f(x) is just going to be equal to x². This is defined and continuous for all real numbers, so we can just substitute the three in there. This is going to be equal to 9.

Now, what's the limit as we approach 3 from the right-hand side of f(x)? Well, as we approach from the right, this one right over here is f(x) = 6x - 9. So, we just write 6x - 9. Once again, 6x - 9 is defined and continuous for all real numbers, so we can just pop a three in there, and you get 18 - 9. Well, this is also equal to 9.

So, the left-hand and right-hand limits both equal 9, which is equal to the value of the function there. So it is definitely continuous. Thus, we can rule out this choice right over there.

Now let's think about differentiability. In order to be differentiable, the limit as x approaches 3 of (f(x) - f(3)) / (x - 3) needs to exist. So, let's see if we can evaluate this. First of all, we know what f(3) is. We have already evaluated this. This is going to be 9.

Let's see what the limit is as we approach from the left-hand side and the right-hand side, and if they're approaching the same thing, then we know that the same thing they're approaching is the limit.

So let's first think about the limit as x approaches 3 from the left-hand side. It’s (f(x) - 9) / (x - 3). But as we approach from the left-hand side, f(x) as x is less than 3 is equal to x². So, instead of f(x) - 9, I'll write x² - 9.

Now, x² - 9 is a difference of squares. So this is (x + 3)(x - 3). These would cancel out, and we can say that this is equivalent to x + 3 as long as x does not equal 3. That's okay because we're approaching from the left. As we approach from the left, well, x + 3 is defined for all real numbers, it's continuous for all real numbers, so we can just substitute the three in there. We would get a 6.

Now let's try to evaluate the limit as we approach from the right-hand side. Once again, it's f(x), but as we approach from the right-hand side, f(x) is 6x - 9, that’s our f(x), and then we have minus f(3), which is 9. So it’s 6x - 18.

6x - 18, well, that's the same thing as 6(x - 3). As we approach from the right, well, that's just going to be equal to 6.

So it looks like our derivative exists there, and it is equal to the limit as x approaches 3 of all of this business equals 6 because the limit as we approach from the left and the right is also equal to 6.

So this looks like we are both continuous and differentiable.

More Articles

View All
Stop Wanting, Start Accepting | The Philosophy of Marcus Aurelius
Although he never considered himself a philosopher, Marcus Aurelius’ writings have become one of the most significant ancient Stoic scriptures. His ‘Meditations’ contain a series of notes to himself based on Stoic ideas, one of which is embracing fate and…
How to Cure Aging – During Your Lifetime?
Health is the most valuable thing we have in life, but we tend to forget that until we lose it. We’re living longer than ever before, which is great, but an unforeseen consequence of this is that we also spend a larger and larger portion of our lives bein…
Warren Buffett's Inflation WARNING for 2021
From raw material purchases by Berkshire subsidiaries, are you seeing signs of inflation beginning to increase? We’re seeing very substantial inflation. It’s very interesting. I mean, we’re raising prices, people are raising prices to us, and it’s being …
Explaining the “Eureka Effect” | StarTalk
No one can imagine anybody else playing that role but you. So what were you doing? What’s your secret? Come on! I love the whole concept of scientists who deal with, uh, insoluble, uh, problems. I love the story of a noted scientist who was trying to fin…
Why Tipping Is Out of Control in the U.S.
Imagine you finished the best meal of your life. The restaurant has white linen tablecloths, and a candle flickers in the center of the table. Wine is flowing, and thanks to the competent and charming waiter, you’ve had an amazing culinary experience. At …
Let’s Travel to The Most Extreme Place in The Universe
The universe is pretty big and very strange. Hundreds of billions of galaxies with sextillions of stars and planets, and in the middle of it all there is Earth, with you and us. But as enormous as the universe seems looking up, it seems to get even large…