yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Differentiability at a point: algebraic (function is differentiable) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Is the function given below continuous differentiable at x = 3? And they've defined it piecewise, and we have some choices: continuous, not differentiable, differentiable, not continuous, both continuous and differentiable, neither continuous nor differentiable.

Now, one of these we can knock out right from the get-go: in order to be differentiable, you need to be continuous there. So, you cannot have differentiable but not continuous, so let's just rule that one out.

Now, let's think about continuity. If it isn't continuous, then it's not going to be differentiable. So, let's think about it a little bit. In order to be continuous, f(3) needs to be equal to the limit of f(x) as x approaches 3. Now, what is f(3)? Well, let's see. We fall into this case right over here because x is equal to 3. So, 6 * 3 is 18, and 18 - 9 is 9, so this is 9.

The limit of f(x) as x approaches 3 needs to be equal to 9. Let's first think about the limit as we approach from the left-hand side. The limit as x approaches 3 from the left-hand side of f(x): well, when x is less than 3, we fall into this case, so f(x) is just going to be equal to x². This is defined and continuous for all real numbers, so we can just substitute the three in there. This is going to be equal to 9.

Now, what's the limit as we approach 3 from the right-hand side of f(x)? Well, as we approach from the right, this one right over here is f(x) = 6x - 9. So, we just write 6x - 9. Once again, 6x - 9 is defined and continuous for all real numbers, so we can just pop a three in there, and you get 18 - 9. Well, this is also equal to 9.

So, the left-hand and right-hand limits both equal 9, which is equal to the value of the function there. So it is definitely continuous. Thus, we can rule out this choice right over there.

Now let's think about differentiability. In order to be differentiable, the limit as x approaches 3 of (f(x) - f(3)) / (x - 3) needs to exist. So, let's see if we can evaluate this. First of all, we know what f(3) is. We have already evaluated this. This is going to be 9.

Let's see what the limit is as we approach from the left-hand side and the right-hand side, and if they're approaching the same thing, then we know that the same thing they're approaching is the limit.

So let's first think about the limit as x approaches 3 from the left-hand side. It’s (f(x) - 9) / (x - 3). But as we approach from the left-hand side, f(x) as x is less than 3 is equal to x². So, instead of f(x) - 9, I'll write x² - 9.

Now, x² - 9 is a difference of squares. So this is (x + 3)(x - 3). These would cancel out, and we can say that this is equivalent to x + 3 as long as x does not equal 3. That's okay because we're approaching from the left. As we approach from the left, well, x + 3 is defined for all real numbers, it's continuous for all real numbers, so we can just substitute the three in there. We would get a 6.

Now let's try to evaluate the limit as we approach from the right-hand side. Once again, it's f(x), but as we approach from the right-hand side, f(x) is 6x - 9, that’s our f(x), and then we have minus f(3), which is 9. So it’s 6x - 18.

6x - 18, well, that's the same thing as 6(x - 3). As we approach from the right, well, that's just going to be equal to 6.

So it looks like our derivative exists there, and it is equal to the limit as x approaches 3 of all of this business equals 6 because the limit as we approach from the left and the right is also equal to 6.

So this looks like we are both continuous and differentiable.

More Articles

View All
Interval of convergence for derivative and integral | Series | AP Calculus BC | Khan Academy
Times in our dealings with power series, we might want to take the derivative or we might want to integrate them. In general, we can do this term by term. What do I mean by that? Well, that means that the derivative of f prime of x is just going to be the…
A Crash Course in Guyanese Cuisine | Gordon Ramsay: Uncharted
This is Georgetown, the Catholic Guyana, a tiny South American country that sits right on the edge of that mighty Amazon jungle. Located on the northern edge of South America, this English-speaking nation is made up of thousands of square miles of untame…
Warren Buffett: How to Turn $10,000 Into $51 Million
We have operated in this country with the greatest tailwind at our back that you can imagine. It’s an investor’s—it means you can’t really fail at it unless you buy the wrong stock or just get excited at the wrong time. But if you owned a cross-section of…
TRANSFORM YOUR LIFE: 15 STOIC STRATEGIES FOR SUCCESS | STOICISM INSIGHTS
Welcome back Stoicism Insights viewers. Today we’re embarking on a journey that promises not just enlightenment, but a profound transformation. Stick around until the end, because we have a surprise in store for you that will revolutionize your understand…
Making Grilled Cheese at the Bottom of the World: A Day in the Life of a Scientist | Continent 7
My name is Paul. This is lunch in Antarctica. Everyday welcome to the kitchen, sits next to the science disc. I live on cheese toasties, so we make that’s lunch. My puppy here, three or four a day. It’s got a bit of cheese here. You can either use this or…
How To Make Galinstan
Let’s make some Gallon Stan. Unlike Mercury, Gallon Stan is not toxic, and it’s a liquid at room temperature. Unlike Gallium, which is solid up until about 30 Celsius, you have to hold this for a while before it starts getting drippy. No, no, no, you dese…