yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Differentiability at a point: algebraic (function is differentiable) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Is the function given below continuous differentiable at x = 3? And they've defined it piecewise, and we have some choices: continuous, not differentiable, differentiable, not continuous, both continuous and differentiable, neither continuous nor differentiable.

Now, one of these we can knock out right from the get-go: in order to be differentiable, you need to be continuous there. So, you cannot have differentiable but not continuous, so let's just rule that one out.

Now, let's think about continuity. If it isn't continuous, then it's not going to be differentiable. So, let's think about it a little bit. In order to be continuous, f(3) needs to be equal to the limit of f(x) as x approaches 3. Now, what is f(3)? Well, let's see. We fall into this case right over here because x is equal to 3. So, 6 * 3 is 18, and 18 - 9 is 9, so this is 9.

The limit of f(x) as x approaches 3 needs to be equal to 9. Let's first think about the limit as we approach from the left-hand side. The limit as x approaches 3 from the left-hand side of f(x): well, when x is less than 3, we fall into this case, so f(x) is just going to be equal to x². This is defined and continuous for all real numbers, so we can just substitute the three in there. This is going to be equal to 9.

Now, what's the limit as we approach 3 from the right-hand side of f(x)? Well, as we approach from the right, this one right over here is f(x) = 6x - 9. So, we just write 6x - 9. Once again, 6x - 9 is defined and continuous for all real numbers, so we can just pop a three in there, and you get 18 - 9. Well, this is also equal to 9.

So, the left-hand and right-hand limits both equal 9, which is equal to the value of the function there. So it is definitely continuous. Thus, we can rule out this choice right over there.

Now let's think about differentiability. In order to be differentiable, the limit as x approaches 3 of (f(x) - f(3)) / (x - 3) needs to exist. So, let's see if we can evaluate this. First of all, we know what f(3) is. We have already evaluated this. This is going to be 9.

Let's see what the limit is as we approach from the left-hand side and the right-hand side, and if they're approaching the same thing, then we know that the same thing they're approaching is the limit.

So let's first think about the limit as x approaches 3 from the left-hand side. It’s (f(x) - 9) / (x - 3). But as we approach from the left-hand side, f(x) as x is less than 3 is equal to x². So, instead of f(x) - 9, I'll write x² - 9.

Now, x² - 9 is a difference of squares. So this is (x + 3)(x - 3). These would cancel out, and we can say that this is equivalent to x + 3 as long as x does not equal 3. That's okay because we're approaching from the left. As we approach from the left, well, x + 3 is defined for all real numbers, it's continuous for all real numbers, so we can just substitute the three in there. We would get a 6.

Now let's try to evaluate the limit as we approach from the right-hand side. Once again, it's f(x), but as we approach from the right-hand side, f(x) is 6x - 9, that’s our f(x), and then we have minus f(3), which is 9. So it’s 6x - 18.

6x - 18, well, that's the same thing as 6(x - 3). As we approach from the right, well, that's just going to be equal to 6.

So it looks like our derivative exists there, and it is equal to the limit as x approaches 3 of all of this business equals 6 because the limit as we approach from the left and the right is also equal to 6.

So this looks like we are both continuous and differentiable.

More Articles

View All
How Dolphins Evade Shark Attacks | Sharks vs. Dolphins: Blood Battle
JAIR DARKE: Oh my god. Another one, another one. Wait. Wait. [bleep] JASON DARKE: He’s got a dolphin in his mouth. NARRATOR: Sharks and dolphins. This vicious rivalry has been raging for millions of years. Two Australian oystermen get a firsthand look a…
TATTOOING Close Up (in Slow Motion) - Smarter Every Day 122
Hey, it’s me, Destin. Welcome back to Smarter Every Day. Not really sure how this is gonna work out, but I want to know a little bit more about tattoos. So I’m just walking up to a tattoo parlour and seeing if they will let me video a tattoo being applied…
Classical Japan during the Heian Period | World History | Khan Academy
What we’re going to do in this video is talk about roughly a thousand years of Japanese history that take us from what’s known as The Classical period of Japan through the Japanese medieval period all the way to the early modern period. The key defining …
The Index Fund Problem Looming in 2024
I told you not to sell. I worry about it. A good.com. Do you happen to own index funds in your portfolio? Maybe SPY from State Street or VO from Vanguard or IVV from Black Rock? All these ETFs track the S&P 500, which is an index composed of the large…
How Money Works
Money. How does that word make you feel? Is it a rush of adrenaline? Dollar signs running through your head like a slot machine? Perhaps you feel motivated, ready to send those work emails you’ve been putting off or spend an extra hour writing that movie …
Solve by completing the square: Integer solutions | Algebra I | Khan Academy
So we’re given this equation here. What I want you to do is pause this video and see if you can solve it. What x values satisfy the equation? All right, now let’s work through this together. One technique could be just let’s just try to complete the squa…