yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ellipse standard equation from graph | Precalculus | High School Math | Khan Academy


2m read
·Nov 11, 2024

So we have an ellipse graph right over here. What we're going to try to do is find the equation for this ellipse.

So like always, pause this video and see if you can figure it out on your own. All right, so let's just remind ourselves of the form of an equation of an ellipse.

So let's say our ellipse is centered at the point. I'm going to speak in generalities first, and then we'll think about the specific numbers for this particular ellipse.

So say the center is at the point (H, K), and let's say that you have a horizontal radius. So the radius in the X direction, horizontal radius, is equal to a. And let's say your vertical radius, let's say your vertical radius, is equal to B.

Then the equation of this ellipse is going to be:

((x - h)^2 / a^2 + (y - k)^2 / b^2 = 1).

So what are H and K, and a and b in this situation? Well, H and K are pretty easy to figure out. The center of this ellipse is at the point.

See, the x-coordinate is -4, and the y-coordinate is 3. So this right over here is -4, and this right over here is 3. And what is a going to be?

Well, a is your horizontal radius, your radius in the horizontal direction. So it's the length of this line right over here, and we can see it's 1, 2, 3, four, five units long. So a in this case is equal to 5.

So this is going to be (5^2), and B is our radius in the vertical direction. We can see it's 1, 2, 3, 4 units, so B is equal to 4.

So that is 4. So we can rewrite this as we could rewrite this as:

((x - (-4))^2 / 5^2 + (y - 3)^2 / 4^2 = 1).

Yus, the y-coordinate of our center.

So (y - 3^2) over our vertical radius squared, so (B^2) is going to be 16, and that is going to be equal to 1.

And of course, we could simplify this a little bit. If I subtract a negative, that's the same thing as adding a positive. So I can get rid of I can just, instead of saying (x - (-4)), I could just say (x + 4).

And there you have it! We have the equation for this ellipse.

More Articles

View All
Brave New Words - Kevin Roose & Sal Khan
Hi everyone, it’s here from Khan Academy, and as some of you all know, I have released my second book, Brave New Words, about the future of AI in education and work. It’s available wherever you might buy your books. But as part of the research for that bo…
Example of under coverage introducing bias | Study design | AP Statistics | Khan Academy
A senator wanted to know about how people in her state felt about internet privacy issues. She conducted a poll by calling 100 people whose names were randomly sampled from the phone book. Note that mobile phones and unlisted numbers are not in phone book…
Strategy in finding limits | Limits and continuity | AP Calculus AB | Khan Academy
Multiple videos and exercises we cover the various techniques for finding limits, but sometimes it’s helpful to think about strategies for determining which technique to use, and that’s what we’re going to cover in this video. What you see here is a flowc…
Endocrine system introduction
What you see in these pictures is a forward view of a transparent man or a semi-transparent man, and this is a posterior back view of a semi-transparent woman. But what are these organs that are depicted? These organs secrete molecules into the bloodstre…
Volume with cross sections: squares and rectangles (no graph) | AP Calculus AB | Khan Academy
The base of a solid is the region enclosed by the graphs of ( y = -x^2 + 6x - 1 ) and ( y = 4 ). Cross sections of the solid perpendicular to the x-axis are rectangles whose height is ( x ). Express the volume of the solid with a definite integral. So pau…
Diving for Cyanobacteria in Lake Huron | National Geographic
Water carries so much information in just one drop. [Music] Today, we’re in Lake Huron. We came specifically to explore cyanobacteria, which is also known as blue-green algae, which were the first organisms to start producing oxygen on our planet. There i…