yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ellipse standard equation from graph | Precalculus | High School Math | Khan Academy


2m read
·Nov 11, 2024

So we have an ellipse graph right over here. What we're going to try to do is find the equation for this ellipse.

So like always, pause this video and see if you can figure it out on your own. All right, so let's just remind ourselves of the form of an equation of an ellipse.

So let's say our ellipse is centered at the point. I'm going to speak in generalities first, and then we'll think about the specific numbers for this particular ellipse.

So say the center is at the point (H, K), and let's say that you have a horizontal radius. So the radius in the X direction, horizontal radius, is equal to a. And let's say your vertical radius, let's say your vertical radius, is equal to B.

Then the equation of this ellipse is going to be:

((x - h)^2 / a^2 + (y - k)^2 / b^2 = 1).

So what are H and K, and a and b in this situation? Well, H and K are pretty easy to figure out. The center of this ellipse is at the point.

See, the x-coordinate is -4, and the y-coordinate is 3. So this right over here is -4, and this right over here is 3. And what is a going to be?

Well, a is your horizontal radius, your radius in the horizontal direction. So it's the length of this line right over here, and we can see it's 1, 2, 3, four, five units long. So a in this case is equal to 5.

So this is going to be (5^2), and B is our radius in the vertical direction. We can see it's 1, 2, 3, 4 units, so B is equal to 4.

So that is 4. So we can rewrite this as we could rewrite this as:

((x - (-4))^2 / 5^2 + (y - 3)^2 / 4^2 = 1).

Yus, the y-coordinate of our center.

So (y - 3^2) over our vertical radius squared, so (B^2) is going to be 16, and that is going to be equal to 1.

And of course, we could simplify this a little bit. If I subtract a negative, that's the same thing as adding a positive. So I can get rid of I can just, instead of saying (x - (-4)), I could just say (x + 4).

And there you have it! We have the equation for this ellipse.

More Articles

View All
Lost in a World Without Purpose: Now What?
Imagine a world in which the vast majority of people are devoid of passion, ambition, and creativity. All they think about is comfort, security, some pleasures in the morning and some pleasures at night, just enough to be distracted from the emptiness of …
Storytelling on Steroids: Quick Cuts and Relentless Editing #Shorts
Videos feature nauseatingly quick cuts and rapid-fire text, and they’re always trying to hook you with forced uncertainties, making you wonder what will happen next or how something will play out. Most media works this way, but this is storytelling on ste…
2015 AP Calculus AB/BC 4ab | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Consider the differential equation: the derivative of y with respect to x is equal to 2x minus y. On the axis provided, sketch a slope field for the given differential equation at the six points indicated. We see 1, 2, 3, 4, 5, 6 points. So what I can d…
_-substitution: defining _ (more examples) | AP Calculus AB | Khan Academy
What we’re going to do in this video is get some more practice identifying when to use u-substitution and picking an appropriate u. So, let’s say we have the indefinite integral of natural log of X to the 10th power, all of that over X, DX. Does u-substi…
Efficacy of Khan Academy
As a teacher thinking about using a tool inside or outside of your classroom, the first natural question is: well, does that tool work? That’s also very important to us here at Khan Academy, with our mission. We don’t want just people to use it; we want t…
What is a main idea? | Reading | Khan Academy
Hello readers! Today I’m in this peaceful forest to tell you all about the skill of figuring out the main idea of a text. Say, what’s the big idea? Yes, exactly! Wait, what? Oh, hello squirrel! You heard me! Big legs, what’s the big idea with you tromping…