yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Volume with cross sections: squares and rectangles (no graph) | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

The base of a solid is the region enclosed by the graphs of ( y = -x^2 + 6x - 1 ) and ( y = 4 ). Cross sections of the solid perpendicular to the x-axis are rectangles whose height is ( x ). Express the volume of the solid with a definite integral. So pause this video and see if you can have a go at that.

All right, now what's interesting about this is they've just given us the equations for the graphs, but we haven't visualized them yet, and we need to visualize them. Or at least, I like to visualize them so I can think about this region that they're talking about. So maybe a first thing to do is think about, well, where do these two lines intersect?

So when do we have the same ( y ) value? Or another way to think about it is when does this thing equal 4? So if we set them equal to each other, we have ( -x^2 + 6x - 1 = 4 ). This will give us the ( x ) values where these two lines intersect. If we want to solve for ( x ), we can subtract 4 from both sides, and we get ( -x^2 + 6x - 5 = 0 ).

We can multiply both sides by negative 1. We will get ( x^2 - 6x + 5 = 0 ), and then this is pretty straightforward to factor. ( 1 \times 5 = 5 ) or actually, I say negative 1 times negative 5 is 5, and negative 1 plus negative 5 is negative 6. So it's going to be ( (x - 1)(x - 5) = 0 ).

These intersect when ( x = 1 ) or ( x = 5 ). Since we have a negative out front of the second degree term, we know it's going to be a downward opening parabola, and we know that we intersect ( y = 4 ) when ( x = 1 ) and ( x = 5 ). The vertex must be right in between them, so the vertex is going to be at ( x = 3 ).

Let’s actually visualize this a little bit. It’s going to look something like this. Draw it with some perspective because we have to think about a three-dimensional shape. So that's our ( y ) axis; this is our ( x ) axis. Let me draw some ( y ) values: 1, 2, 3, 4, 5, 6, 7, 8. This is probably sufficient.

Now we have ( y = 4 ), which is going to look something like this, so that is ( y = 4 ). Then we have ( y = -x^2 + 6x - 1 ), which we know intersects ( y = 4 ) at ( x = 1 ) or ( x = 5 ). So let's see: 1, 2, 3, 4, 5.

We have that point right over there: ( (1, 4) ) and then we have ( (5, 4) ). We know the vertex is when ( x = 3 ), so it might look something like this. We could substitute 3 back in here:

( y = -9 + 18 - 1 ). What is that going to be? That's going to be ( y = 8 ). So we have the point ( (3, 8) ). This is 5, 6, 7, 8—yep, right about there.

So we are dealing with a situation that looks something like this. This is the region in question, so that's going to be the base of our solid. They say cross sections of the solid perpendicular to the x-axis.

Let me draw one of those cross-sections. This is a cross-section perpendicular to the x-axis—rectangles whose height is ( x ). So this is going to have height ( x ) right over here. The height is ( x ).

Now, what is this? The width I guess we could say of this rectangle? Well, it's going to be the difference between these two functions. It's going to be the upper function minus the lower function, so that right over there is going to be ( -x^2 + 6x - 1 ) and then minus 4, which gives us the lower function.

So that could be simplified as ( -x^2 + 6x - 5 ). If we want to figure out the volume of this little section right over here, we multiply ( x ) times this and then we would multiply that times an infinitesimally small depth ( dx ).

Then we can just integrate from ( x = 1 ) to ( x = 5 ). So let's do that. The volume of just this little slice over here is going to be the base, which is ( -x^2 + 6x - 5 ), times the height ( x ), times the depth ( dx ).

What we want to do is sum up all of these, and you could imagine right over here you would have—or like right over here—you would have a cross-section that looks like this ( x ), it's now much larger; the height is ( x ).

So now it looks something like this. I'm just drawing two cross-sections just so you get the idea. So this is any one cross-section for a given ( x ), but now we want to integrate our ( x ) going from ( x = 1 ) to ( x = 5 ); ( x = 1 ) to ( x = 5 ).

And there you have it; we have expressed the volume of that solid as a definite integral. It's worth noting that this definite integral—if you distribute this ( x ), if you multiply it by all of these terms—it's very solvable. You don't need a calculator; you're just going to get a polynomial over here that you have to take the anti-derivative of in order to evaluate the definite integral.

More Articles

View All
Multiplying using area models and the standard algorithm
What we’re going to do in this video is multiply the numbers 352 and 481, and we’re gonna do it in two different ways. But realize that the underlying ideas are the same. So first, let’s just appreciate that 352 can be rewritten as 300 plus 50 plus 2, or…
Understanding economic growth | AP Macroeconomics | Khan Academy
In this video, we’re going to talk about economic growth. I want to be very careful here because, depending on the context, people, including economists, might mean different things by economic growth. In everyday language, when people are talking about …
Solo Escape from Iraq | No Man Left Behind
I was a 28-year-old guy loving life and everything else. And uh, I was in the Special Air Service. I can remember flying in; the first thing that came over the headset was the pilot saying, “Welcome to Iraq.” From that point, a new game was on. The 8-man …
How to renovate your private jet
I was going to say, like, what’s a turnaround time for the change of an interior? Also, for example, if you put half a million into renovating the interior, there are three things you could do to the interior: the soft goods, which is all the fabrics, whe…
Chi-square test for association (independence) | AP Statistics | Khan Academy
We’re already familiar with the chi-squared statistic. If you’re not, I encourage you to review the videos on that. And we’ve already done some hypothesis testing with the chi-squared statistic. We’ve even done some hypothesis testing based on two-way tab…
The mindset that will (quickly) improve your life
So let me know if this has ever happened to you. You get really excited about starting a new diet. You’re starting to feel like crap about yourself, and you think a new diet will solve all your problems. So you start doing some research online. You read o…