yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Volume with cross sections: squares and rectangles (no graph) | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

The base of a solid is the region enclosed by the graphs of ( y = -x^2 + 6x - 1 ) and ( y = 4 ). Cross sections of the solid perpendicular to the x-axis are rectangles whose height is ( x ). Express the volume of the solid with a definite integral. So pause this video and see if you can have a go at that.

All right, now what's interesting about this is they've just given us the equations for the graphs, but we haven't visualized them yet, and we need to visualize them. Or at least, I like to visualize them so I can think about this region that they're talking about. So maybe a first thing to do is think about, well, where do these two lines intersect?

So when do we have the same ( y ) value? Or another way to think about it is when does this thing equal 4? So if we set them equal to each other, we have ( -x^2 + 6x - 1 = 4 ). This will give us the ( x ) values where these two lines intersect. If we want to solve for ( x ), we can subtract 4 from both sides, and we get ( -x^2 + 6x - 5 = 0 ).

We can multiply both sides by negative 1. We will get ( x^2 - 6x + 5 = 0 ), and then this is pretty straightforward to factor. ( 1 \times 5 = 5 ) or actually, I say negative 1 times negative 5 is 5, and negative 1 plus negative 5 is negative 6. So it's going to be ( (x - 1)(x - 5) = 0 ).

These intersect when ( x = 1 ) or ( x = 5 ). Since we have a negative out front of the second degree term, we know it's going to be a downward opening parabola, and we know that we intersect ( y = 4 ) when ( x = 1 ) and ( x = 5 ). The vertex must be right in between them, so the vertex is going to be at ( x = 3 ).

Let’s actually visualize this a little bit. It’s going to look something like this. Draw it with some perspective because we have to think about a three-dimensional shape. So that's our ( y ) axis; this is our ( x ) axis. Let me draw some ( y ) values: 1, 2, 3, 4, 5, 6, 7, 8. This is probably sufficient.

Now we have ( y = 4 ), which is going to look something like this, so that is ( y = 4 ). Then we have ( y = -x^2 + 6x - 1 ), which we know intersects ( y = 4 ) at ( x = 1 ) or ( x = 5 ). So let's see: 1, 2, 3, 4, 5.

We have that point right over there: ( (1, 4) ) and then we have ( (5, 4) ). We know the vertex is when ( x = 3 ), so it might look something like this. We could substitute 3 back in here:

( y = -9 + 18 - 1 ). What is that going to be? That's going to be ( y = 8 ). So we have the point ( (3, 8) ). This is 5, 6, 7, 8—yep, right about there.

So we are dealing with a situation that looks something like this. This is the region in question, so that's going to be the base of our solid. They say cross sections of the solid perpendicular to the x-axis.

Let me draw one of those cross-sections. This is a cross-section perpendicular to the x-axis—rectangles whose height is ( x ). So this is going to have height ( x ) right over here. The height is ( x ).

Now, what is this? The width I guess we could say of this rectangle? Well, it's going to be the difference between these two functions. It's going to be the upper function minus the lower function, so that right over there is going to be ( -x^2 + 6x - 1 ) and then minus 4, which gives us the lower function.

So that could be simplified as ( -x^2 + 6x - 5 ). If we want to figure out the volume of this little section right over here, we multiply ( x ) times this and then we would multiply that times an infinitesimally small depth ( dx ).

Then we can just integrate from ( x = 1 ) to ( x = 5 ). So let's do that. The volume of just this little slice over here is going to be the base, which is ( -x^2 + 6x - 5 ), times the height ( x ), times the depth ( dx ).

What we want to do is sum up all of these, and you could imagine right over here you would have—or like right over here—you would have a cross-section that looks like this ( x ), it's now much larger; the height is ( x ).

So now it looks something like this. I'm just drawing two cross-sections just so you get the idea. So this is any one cross-section for a given ( x ), but now we want to integrate our ( x ) going from ( x = 1 ) to ( x = 5 ); ( x = 1 ) to ( x = 5 ).

And there you have it; we have expressed the volume of that solid as a definite integral. It's worth noting that this definite integral—if you distribute this ( x ), if you multiply it by all of these terms—it's very solvable. You don't need a calculator; you're just going to get a polynomial over here that you have to take the anti-derivative of in order to evaluate the definite integral.

More Articles

View All
Building a Bundle Boat | Live Free or Die
Feel like if I build a boat, it saved me a lot of walking. I saw a boorish pawn over here and I was thinking maybe getting a bunch of eats together, bundle them together, and make a boat. So what I want is big bundles. These, ‘cause you can see inside, i…
Why Beautiful Things Make us Happy – Beauty Explained
A lot of things can be beautiful. Landscapes, faces, fine art, or epic architecture; stars in the sky. Or simply the reflection of the sun on an empty bottle. Beauty is nothing tangible; it only exists in our heads as a pleasant feeling. If we have to def…
What EVERYONE Needs To Do With Their Money ASAP
What’s up you guys, it’s Graham here. So I want to begin this video on a very serious note. As many businesses and cities begin to shut down, cease operations, close schools, cut hours, and inevitably begin laying off workers, it’s really more important …
Michael Burry Is Predicting an Even Bigger Crash.
As you guys probably saw from my video a few weeks ago, Michael Burry, the man that famously predicted the ‘08 housing bubble, is currently predicting another very large recession and stock market crash in 2022 on the back of all the inflation we’re curre…
Mr. Freeman, part 05
Dear friends, citizens of free democratic countries! I, the most popular long-lived viral ad, congratulate you with the New Year! What are you looking at?.. Aaah… Message! The passing year was long and full of events. There was everything - happiness and…
How To Change The World? Get The Small Things Right – Dalton Caldwell and Michael Seibel
Let’s say that changing the world is like uprooting a tree, like a big old tall tree. Imagine there were two founders. One founder knew that trees have roots, and the other founder had no idea. Right? Like the trees with roots person, they have an advanta…