yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Can you solve the basketball riddle? - Dan Katz


4m read
·Nov 8, 2024

You’ve spent months creating a basketball-playing robot, the Dunk-O-Matic, and you’re excited to demonstrate it at the prestigious Sportecha Conference. Until you read an advertisement: “See the Dunk-O-Matic face human players and automatically adjust its skill to create a fair game for every opponent!”

That's not what you were told to create. You designed a robot that shoots baskets, sometimes successfully and sometimes not, taking turns with a human opponent. No one said anything about teaching it to adjust its performance. Maybe the CEO skimmed an article about AI and overpromised, setting you up for public embarrassment.

Luckily, you installed a feature where, given any probability q, you can adjust the robot to have that probability of success on each attempt. You swiftly gather information, and jackpot: your team has a dossier on all potential demo participants, including the probability each has of making baskets.

In each match, the human shoots first, then the robot, then the human again, and so on until someone makes the first successful basket and wins. You can remotely adjust the Dunk-O-Matic’s probability between opponents. What should that probability be for each opponent, so that the human has a 50% chance of winning each match?

Pause here to figure it out yourself. Answer in 3. Answer in 2. Answer in 1. You might guess that q should be equal to p. But that ignores the advantage of going first. Suppose p and q are both 100%. Even though the competitors are equally skilled, the first player always wins. So a deeper analysis is required.

One approach involves adding up every chance the human has to win, using geometric series. A geometric series is an infinite sum of numbers, where each number is the previous number multiplied by a common ratio. Two facts about geometric series are useful here. First, if the common ratio r of a geometric series has absolute value less than 1, the series has a finite total. And second, if the first number in the series is a, that total is: a divided by 1 minus r.

How does this help us calibrate our robot? Remember that the human has probability p of making a basket. Since they go first, they have probability p of winning on the first try. What’s the probability that they win on the second try? That attempt only happens if both players miss. The probability of a miss is 1 minus the probability of a success, so the miss probabilities are 1 minus p and 1 minus q.

The chance of both happening is the product of those values. So the probability of two failures and then a human success is p times (1 minus p) times (1 minus q). Winning on the third try requires another round of misses, so that chance is p multiplied by the double-miss probability twice.

If we add all the possible probabilities of a human win, the total is the sum of a geometric series. Since the first number in the series is p, and the ratio is this product that’s less than 1, the sum will be (p divided by 1) minus the ratio. We want this sum to be 1/2. Using some algebra to solve for q, we find that q should equal p divided by 1 minus p.

If p is greater than 50%, q would need to be bigger than 1, which can’t happen. In that case, a fair game is impossible, because the human has a better-than-50% chance of winning immediately. The robot's total probability is also the total of a geometric series.

How does this series compare to the human’s? To win, the robot needs some number of double misses, then a human failure followed by a robot success. If q equals p over 1 minus p, (1 minus p) times q is p. For our choice of q, not only do these series have the same sum, but they’re the same series!

We could bypass geometric series by starting with this reasoning. The robot’s chances of winning in the first round is (1 minus p) times q, and so if we want that chance to match the human’s first-round chance, we want it to equal p, making q: p over 1 minus p. More rounds may occur, but before each round, the competitors are tied, so everything effectively restarts.

If they have the same odds of winning in the first round, they also will in the second round, and so on. The demonstration goes perfectly, but while you didn't want to embarrass yourself, you also didn’t want to deceive the public. Taking the stage, you explain your company’s false promises and your hastily ad-libbed solution.

Thankfully, the ensuing bad press is directed at your employers, and it turns out the presentation volunteers own a more employee-friendly robotics company. After some tedious intellectual property litigation, you find yourself at a healthier workplace with a regular spot on a pickup basketball team.

More Articles

View All
Tactics That Keep You Moving In The Right Direction
Some of the most impactful tools that you can use to succeed in life are 100% free, and everyone has access to them, but almost no one uses them. We promise you that if you implement everything on this list, you will be a completely different person in le…
pH and solubility | Equilibrium | AP Chemistry | Khan Academy
Changing the pH of a solution can affect the solubility of a slightly soluble salt. For example, if we took some solid lead(II) fluoride, which is a white solid, and we put it in some distilled water, the solid is going to reach an equilibrium with the io…
Expressing a quadratic form with a matrix
Hey guys, there’s one more thing I need to talk about before I can describe the vectorized form for the quadratic approximation of multivariable functions, which is a mouthful to say. So let’s say you have some kind of expression that looks like ( ax^2 ).…
Median in a histogram | Summarizing quantitative data | AP Statistics | Khan Academy
Miguel tracked how much sleep he got for 50 consecutive days and made a histogram of the results. Which interval contains the median sleep amount? So, they’re saying, is it this interval on the histogram from 6 to 6.5, or this one, or this one, or any of …
Eric Migicovsky at Startup School SV 2014
Hi guys, um, it’s an honor to be here. I really appreciate you guys taking time out of your day to come listen to me. Um, I know that many of you may have heard about us when we launched on Kickstarter about two years ago. Um, I’m here to tell you a littl…
Homeroom with Sal & Kristen DiCerbo
Okay standby. I realize I didn’t put the links to both of these. Hi everyone, welcome to our daily homeroom live stream! Sal here from Khan Academy. For those of you who are wondering what this is, this is our way of staying in touch. We started doing th…