yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Can you solve the basketball riddle? - Dan Katz


4m read
·Nov 8, 2024

You’ve spent months creating a basketball-playing robot, the Dunk-O-Matic, and you’re excited to demonstrate it at the prestigious Sportecha Conference. Until you read an advertisement: “See the Dunk-O-Matic face human players and automatically adjust its skill to create a fair game for every opponent!”

That's not what you were told to create. You designed a robot that shoots baskets, sometimes successfully and sometimes not, taking turns with a human opponent. No one said anything about teaching it to adjust its performance. Maybe the CEO skimmed an article about AI and overpromised, setting you up for public embarrassment.

Luckily, you installed a feature where, given any probability q, you can adjust the robot to have that probability of success on each attempt. You swiftly gather information, and jackpot: your team has a dossier on all potential demo participants, including the probability each has of making baskets.

In each match, the human shoots first, then the robot, then the human again, and so on until someone makes the first successful basket and wins. You can remotely adjust the Dunk-O-Matic’s probability between opponents. What should that probability be for each opponent, so that the human has a 50% chance of winning each match?

Pause here to figure it out yourself. Answer in 3. Answer in 2. Answer in 1. You might guess that q should be equal to p. But that ignores the advantage of going first. Suppose p and q are both 100%. Even though the competitors are equally skilled, the first player always wins. So a deeper analysis is required.

One approach involves adding up every chance the human has to win, using geometric series. A geometric series is an infinite sum of numbers, where each number is the previous number multiplied by a common ratio. Two facts about geometric series are useful here. First, if the common ratio r of a geometric series has absolute value less than 1, the series has a finite total. And second, if the first number in the series is a, that total is: a divided by 1 minus r.

How does this help us calibrate our robot? Remember that the human has probability p of making a basket. Since they go first, they have probability p of winning on the first try. What’s the probability that they win on the second try? That attempt only happens if both players miss. The probability of a miss is 1 minus the probability of a success, so the miss probabilities are 1 minus p and 1 minus q.

The chance of both happening is the product of those values. So the probability of two failures and then a human success is p times (1 minus p) times (1 minus q). Winning on the third try requires another round of misses, so that chance is p multiplied by the double-miss probability twice.

If we add all the possible probabilities of a human win, the total is the sum of a geometric series. Since the first number in the series is p, and the ratio is this product that’s less than 1, the sum will be (p divided by 1) minus the ratio. We want this sum to be 1/2. Using some algebra to solve for q, we find that q should equal p divided by 1 minus p.

If p is greater than 50%, q would need to be bigger than 1, which can’t happen. In that case, a fair game is impossible, because the human has a better-than-50% chance of winning immediately. The robot's total probability is also the total of a geometric series.

How does this series compare to the human’s? To win, the robot needs some number of double misses, then a human failure followed by a robot success. If q equals p over 1 minus p, (1 minus p) times q is p. For our choice of q, not only do these series have the same sum, but they’re the same series!

We could bypass geometric series by starting with this reasoning. The robot’s chances of winning in the first round is (1 minus p) times q, and so if we want that chance to match the human’s first-round chance, we want it to equal p, making q: p over 1 minus p. More rounds may occur, but before each round, the competitors are tied, so everything effectively restarts.

If they have the same odds of winning in the first round, they also will in the second round, and so on. The demonstration goes perfectly, but while you didn't want to embarrass yourself, you also didn’t want to deceive the public. Taking the stage, you explain your company’s false promises and your hastily ad-libbed solution.

Thankfully, the ensuing bad press is directed at your employers, and it turns out the presentation volunteers own a more employee-friendly robotics company. After some tedious intellectual property litigation, you find yourself at a healthier workplace with a regular spot on a pickup basketball team.

More Articles

View All
Understanding equivalent ratios
We’re told that Burger Barn makes dipping sauce by mixing two spoonfuls of honey with one half spoonful of mustard. Sandwich Town makes dipping sauce by mixing four spoonfuls of honey with one spoonful of mustard. Which dipping sauce has a stronger mustar…
Olga Vidisheva Speaks at Female Founders Conference 2015
Hi everyone! I’m so excited to be here today to share the story of Chopsticks and my journey here. For those of you guys who don’t know, Chopsticks lets you shop the world’s most unique boutiques around the world. It used to be that if you lived in Dallas…
The Journey of Self Discovery: Uncovering Your True Identity
Every day you cross paths with countless strangers. People sit next to you on the bus; you’re a cashier at the grocery store, sends you a smile, and someone works out beside you at the gym. Often, these faces pass us by; there’s nothing particularly disti…
2015 AP Calculus AB 6b | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Find the coordinates of all points on the curve at which the line tangent to the curve at that point is vertical. So, we want to figure out the points on that curve where the tangent line is vertical. Let’s just remind ourselves what the slope of a tange…
Everything About Grain Bins (Farmers are Geniuses) - Smarter Every Day 218
Holy cow, there’s a lot going on here! Hey, it’s me, Destin. Welcome back to Smarter Everyday. When you eat today, that’s food going to get to your plate from a field like this, and before it gets in that field, it’s going to pass through the hand and the…
Free Solo - Trailer | National Geographic
It feels different to be up there without a rope. It’s obviously like much higher consequence. People who know a little bit about climbing, they’re like, “Oh, he’s totally safe,” and then people who really know exactly what he’s doing, I freaked out. I’ve…