yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Linear equations with unknown coefficients | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we have an equation. It says ( ax + 3x = bx + 5 ).

And what I want to do together is to solve for ( x ). If we solve for ( x ), it's going to be in terms of ( a ), ( b ), and other numbers. So pause the video and see if you can do that.

All right, now let's do this together. What I'm going to do is I'm going to try to group all of the ( x ) terms. Let's group all the ( x ) terms on the left-hand side. I already have ( ax ) and ( 3x ) on the left-hand side. Let's get ( bx ) onto the left-hand side as well. I can do that by subtracting ( bx ) from both sides.

If I subtract ( bx ) from both sides, I'm going to get, on the right-hand side, I'm going to have ( 5 ). On the left-hand side, I have ( ax + 3x - bx ). I could do that in that color for fun: ( - bx ). And that's going to be equal to, well, ( bx - bx ) is just ( 0 ), and I have ( 5 ). It is equal to ( 5 ).

Now what I can do is I can factor an ( x ) out of the left-hand side of this equation, out of all of the terms. So I can rewrite this as ( x \times ( \frac{a}{x} + 3 - \frac{b}{x} ) ), where ( ax \div x = a ), ( 3x \div x = 3 ), and ( -bx \div x = -b ). That’s all going to be equal to ( 5 ).

Now to solve for ( x ), I can just divide both sides by the thing that ( x ) is being multiplied by, ( a + 3 - b ). So I can divide both sides by ( a + 3 - b ). On this side, they cancel out, and I have ( x = \frac{5}{a + 3 - b} ).

And we are done!

Let's do one more of these. So another equation here, we have ( a ) here, we have ( a \times (5 - x) = bx - 8 ). So once again, pause the video and see if you can solve for ( x ).

Well, the way I like to approach these is, let’s just expand everything out. So let me just distribute this ( a ), and then I'm going to collect all the ( x ) terms on one side and all of the non-( x ) terms on the other side and essentially do what I just did in the last example.

So let’s first distribute this ( a ). The left-hand side becomes ( 5a - ax ). That is going to be equal to ( bx - 8 ).

Now we can subtract ( bx ) from both sides. So we're going to subtract ( bx ) from the left-hand side and from the right-hand side. Once again, the whole reason I'm doing that is I want all the ( x ) terms on the left and all the non-( x ) terms on the right.

Actually, since I want all the non-( x ) terms on the right, I can also subtract ( 5a ) from both sides. I'm kind of doing two steps at once here, but hopefully, it makes sense. I'm trying to get rid of ( bx ) here and get rid of ( 5a ) here, so I subtract ( 5a ) there and I'll subtract ( 5a ) there.

Then let’s see what this gives us. The ( 5a )s cancel out, and on the left-hand side, I have ( -ax - bx ). I’m doing that same green color: ( - bx ). On the right-hand side, this is going to be equal to ( -8 - 5a ) (let’s say magenta color).

Now I’ve separated all my ( x )s on one side and all my non-( x )s on the other side. Here I can factor out an ( x ). If I multiply both sides by ( -1 ), I get ( ax + bx = 8 + 5a ).

That just gets rid of all those negative signs. Now I can factor out an ( x ). I get ( x \times (a + b) = 8 + 5a ).

Now we can just divide both sides by ( a + b ). So we divide both sides by ( a + b ), and we're going to be left with ( x = \frac{8 + 5a}{a + b} ).

And we are done! We have now solved for ( x ) in terms of ( a )s and ( b )s and other things, and we are all done.

More Articles

View All
WATCH THIS Before Building Multiple Income Streams
It’s been constantly said that in order to get really wealthy, you need to have multiple streams of income. We’ve also mentioned this in past videos. Ideally, you should aim to have around three to seven individual streams of income to be safe. But here’s…
Evicting Tenants - My Thoughts
What’s up, guys? It’s Graham here. So I want to take a moment to talk about something serious. Whether or not this affects you, I think this is something worth knowing about and discussing further. That would be the upcoming wave of evictions and mortgag…
Opportunities for high school and college tutors
Hi everyone, Sal Khan here from Khan Academy. Many of you all know about another project, another not-for-profit that I’ve been involved with known as schoolhouse.world, which is all about giving folks free tutoring. We do that by finding amazing voluntee…
Can Texas Secede from the Union?
Can Texas secede from the Union? America’s second most populated and second largest state is always first to remind you that it was once an independent nation: The Republic of Texas. Unlike California’s three-week, almost accidental flirt with independenc…
We Tracked Every Visitor to Epstein Island | WIRED
Even in death, the secrets of Jeffrey Epstein remain tightly guarded. But earlier this year, I spearheaded a Wired investigation that uncovered the data of almost 200 mobile phones belonging to visitors to his infamous pedophile island. The data was so pr…
Alienated | Vocabulary | Khan Academy
Hey wordsmiths! Just checking in; you doing okay? The word we’re talking about today is “alienated.” “Alienated” it’s an adjective and it means feeling excluded and apart from other people. Kind of a bummer word, but at the same time, a fascinating one. …