yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Linear equations with unknown coefficients | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we have an equation. It says ( ax + 3x = bx + 5 ).

And what I want to do together is to solve for ( x ). If we solve for ( x ), it's going to be in terms of ( a ), ( b ), and other numbers. So pause the video and see if you can do that.

All right, now let's do this together. What I'm going to do is I'm going to try to group all of the ( x ) terms. Let's group all the ( x ) terms on the left-hand side. I already have ( ax ) and ( 3x ) on the left-hand side. Let's get ( bx ) onto the left-hand side as well. I can do that by subtracting ( bx ) from both sides.

If I subtract ( bx ) from both sides, I'm going to get, on the right-hand side, I'm going to have ( 5 ). On the left-hand side, I have ( ax + 3x - bx ). I could do that in that color for fun: ( - bx ). And that's going to be equal to, well, ( bx - bx ) is just ( 0 ), and I have ( 5 ). It is equal to ( 5 ).

Now what I can do is I can factor an ( x ) out of the left-hand side of this equation, out of all of the terms. So I can rewrite this as ( x \times ( \frac{a}{x} + 3 - \frac{b}{x} ) ), where ( ax \div x = a ), ( 3x \div x = 3 ), and ( -bx \div x = -b ). That’s all going to be equal to ( 5 ).

Now to solve for ( x ), I can just divide both sides by the thing that ( x ) is being multiplied by, ( a + 3 - b ). So I can divide both sides by ( a + 3 - b ). On this side, they cancel out, and I have ( x = \frac{5}{a + 3 - b} ).

And we are done!

Let's do one more of these. So another equation here, we have ( a ) here, we have ( a \times (5 - x) = bx - 8 ). So once again, pause the video and see if you can solve for ( x ).

Well, the way I like to approach these is, let’s just expand everything out. So let me just distribute this ( a ), and then I'm going to collect all the ( x ) terms on one side and all of the non-( x ) terms on the other side and essentially do what I just did in the last example.

So let’s first distribute this ( a ). The left-hand side becomes ( 5a - ax ). That is going to be equal to ( bx - 8 ).

Now we can subtract ( bx ) from both sides. So we're going to subtract ( bx ) from the left-hand side and from the right-hand side. Once again, the whole reason I'm doing that is I want all the ( x ) terms on the left and all the non-( x ) terms on the right.

Actually, since I want all the non-( x ) terms on the right, I can also subtract ( 5a ) from both sides. I'm kind of doing two steps at once here, but hopefully, it makes sense. I'm trying to get rid of ( bx ) here and get rid of ( 5a ) here, so I subtract ( 5a ) there and I'll subtract ( 5a ) there.

Then let’s see what this gives us. The ( 5a )s cancel out, and on the left-hand side, I have ( -ax - bx ). I’m doing that same green color: ( - bx ). On the right-hand side, this is going to be equal to ( -8 - 5a ) (let’s say magenta color).

Now I’ve separated all my ( x )s on one side and all my non-( x )s on the other side. Here I can factor out an ( x ). If I multiply both sides by ( -1 ), I get ( ax + bx = 8 + 5a ).

That just gets rid of all those negative signs. Now I can factor out an ( x ). I get ( x \times (a + b) = 8 + 5a ).

Now we can just divide both sides by ( a + b ). So we divide both sides by ( a + b ), and we're going to be left with ( x = \frac{8 + 5a}{a + b} ).

And we are done! We have now solved for ( x ) in terms of ( a )s and ( b )s and other things, and we are all done.

More Articles

View All
The Cognitive Tradeoff Hypothesis
This is Inuyama, Japan, a historic city home to Japan’s oldest original wooden castle. It is also home to Kyoto University’s Primate Research Institute. Here, a group of chimpanzees have been trained to play a game that exposes something shocking about th…
Peter Lynch: Avoid These 10 Investment Mistakes
This is a very important rule. This is a very, it’s one of the key rules: the stock doesn’t know you own it. Remember that you could be a miserable person; you could have, uh, you know, never helped anybody, never done anything right, had 67 spouses, neve…
Introduction to sampling distributions
So let’s say I have a bag of colored balls here, and we know that 40 of the balls are orange. Now imagine defining a random variable X, and X is based on a trial where we stick our hand in this bag, we don’t look around, and we randomly pick a ball, look …
What's in Bill Gates' $47 Billion Stock Portfolio?
Bill Gates, the internet sensation. You might know him as the guy that jumped over a chair or the guy that has no idea what the price of groceries are. Or you might know him as the genius co-founder of Microsoft and the world’s seventh richest man, just b…
Discussing Reincarnation in Hinduism | The Story of God
[Music] We think of Hinduism as having reincarnation and life after life after life. But there is really an end to that. That they’re hoping and seeking, which is to go to enlightenment. So once they’ve gone through enough, and I guess learned enough, th…
The Battle of SHARKS!
While riding my bike around London, I stumbled upon this and was like, “Surprise!” Sharks raise questions that need answers. So once back home, to Google I went, with a search query that would turn the next six weeks of my life real weird with phone calls…