yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Linear equations with unknown coefficients | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

So we have an equation. It says ( ax + 3x = bx + 5 ).

And what I want to do together is to solve for ( x ). If we solve for ( x ), it's going to be in terms of ( a ), ( b ), and other numbers. So pause the video and see if you can do that.

All right, now let's do this together. What I'm going to do is I'm going to try to group all of the ( x ) terms. Let's group all the ( x ) terms on the left-hand side. I already have ( ax ) and ( 3x ) on the left-hand side. Let's get ( bx ) onto the left-hand side as well. I can do that by subtracting ( bx ) from both sides.

If I subtract ( bx ) from both sides, I'm going to get, on the right-hand side, I'm going to have ( 5 ). On the left-hand side, I have ( ax + 3x - bx ). I could do that in that color for fun: ( - bx ). And that's going to be equal to, well, ( bx - bx ) is just ( 0 ), and I have ( 5 ). It is equal to ( 5 ).

Now what I can do is I can factor an ( x ) out of the left-hand side of this equation, out of all of the terms. So I can rewrite this as ( x \times ( \frac{a}{x} + 3 - \frac{b}{x} ) ), where ( ax \div x = a ), ( 3x \div x = 3 ), and ( -bx \div x = -b ). That’s all going to be equal to ( 5 ).

Now to solve for ( x ), I can just divide both sides by the thing that ( x ) is being multiplied by, ( a + 3 - b ). So I can divide both sides by ( a + 3 - b ). On this side, they cancel out, and I have ( x = \frac{5}{a + 3 - b} ).

And we are done!

Let's do one more of these. So another equation here, we have ( a ) here, we have ( a \times (5 - x) = bx - 8 ). So once again, pause the video and see if you can solve for ( x ).

Well, the way I like to approach these is, let’s just expand everything out. So let me just distribute this ( a ), and then I'm going to collect all the ( x ) terms on one side and all of the non-( x ) terms on the other side and essentially do what I just did in the last example.

So let’s first distribute this ( a ). The left-hand side becomes ( 5a - ax ). That is going to be equal to ( bx - 8 ).

Now we can subtract ( bx ) from both sides. So we're going to subtract ( bx ) from the left-hand side and from the right-hand side. Once again, the whole reason I'm doing that is I want all the ( x ) terms on the left and all the non-( x ) terms on the right.

Actually, since I want all the non-( x ) terms on the right, I can also subtract ( 5a ) from both sides. I'm kind of doing two steps at once here, but hopefully, it makes sense. I'm trying to get rid of ( bx ) here and get rid of ( 5a ) here, so I subtract ( 5a ) there and I'll subtract ( 5a ) there.

Then let’s see what this gives us. The ( 5a )s cancel out, and on the left-hand side, I have ( -ax - bx ). I’m doing that same green color: ( - bx ). On the right-hand side, this is going to be equal to ( -8 - 5a ) (let’s say magenta color).

Now I’ve separated all my ( x )s on one side and all my non-( x )s on the other side. Here I can factor out an ( x ). If I multiply both sides by ( -1 ), I get ( ax + bx = 8 + 5a ).

That just gets rid of all those negative signs. Now I can factor out an ( x ). I get ( x \times (a + b) = 8 + 5a ).

Now we can just divide both sides by ( a + b ). So we divide both sides by ( a + b ), and we're going to be left with ( x = \frac{8 + 5a}{a + b} ).

And we are done! We have now solved for ( x ) in terms of ( a )s and ( b )s and other things, and we are all done.

More Articles

View All
The 4 things it takes to be an expert
Do you bring this trick out at parties? Oh no. It’s a terrible party trick. Here we go. 3.141592653589793 This is Grant Gussman. He watched an old video of mine about how we think that there are two systems of thought. System two is the conscious slow e…
Where does NASA keep the Moon Rocks? - Smarter Every Day 220
[Destin] What is this? Apollo 11, the first mission. [Destin] This is Apollo 11? [Andrea] The first mission, these are the samples, all the samples that were brought back from the Apollo 11 mission. [Destin] Is it still awesome for you? It’s awesome,…
How To Win The Economic War Against China
Let’s talk about the real tariff war. It’s between the United States and China. This is an economic war going on. They do not play by the rules; they steal American companies’ IP. We can’t use their court systems. They litigate us with our American courts…
I FOUND THE 5 BEST BANK ACCOUNTS!
What’s up you guys! It’s Graham here. So one week ago, I made a video going over the worst bank accounts out there. These are the ones that charge you endless fees, that pay you no interest, that rob you as soon as you drop below their daily minimums, and…
Khan for Educators: Where do I go from here?
Congratulations on completing Khan for Educator’s initial course! Your efforts to grow your professional learning inspire all of us at Khan Academy. While this course has come to an end, Khan Academy offers other communication channels and opportunities …
4 Ways To Deal With 'Toxic People'
Today, I shall be meeting with interference, ingratitude, insolence, disloyalty, ill-will, and selfishness, all of them due to the offenders ignorant of what is good or evil. We all know someone in our lives that’s so exhausting to be around. There’s alwa…