yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the intermediate value theorem: equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let g of x equal one over x. Can we use the intermediate value theorem to say that there is a value c such that g of c is equal to zero and negative one is less than or equal to c is less than or equal to one?

If so, write a justification.

So in order to even use the intermediate value theorem, you have to be continuous over the interval that you care about, and this interval that we care about is from x equals negative one to one.

And one over x is not continuous over that interval. It is not defined when x is equal to zero.

And so we could say no because g of x is not defined. Not defined, or I could say let me just say not continuous.

It's also not defined at every point of the interval, but let's say not continuous over the closed interval from negative one to one.

And we could even put parentheses: not defined at x is equal to zero.

All right, now let's ask the second question. Can we use the intermediate value theorem to say that the equation g of x is equal to three-fourths has a solution where one is less than or equal to x is less than or equal to two?

If so, write a justification.

All right, so first let's look at the interval. If we're thinking about the interval from one to two, well yeah, our function is going to be continuous over that interval.

So we could say g of x is continuous on the closed interval from one to two.

And if you wanted to put more justification there, you could say g is defined for all real numbers such that x does not equal zero.

I can write g of x is defined for all real numbers such that x does not equal to zero.

And you could say rational functions like one over x are continuous at all points in their domains.

At all points in their domain, that's really establishing that g of x is continuous on that interval.

And then we want to see what values does g take on at the endpoint, or actually these are the endpoints that we're looking at right over here.

g of one is going to be equal to one over one, which is one, and g of two is going to be one over two, which is equal to one over two.

So three-fourths is between g of one and g of two.

So by the intermediate value theorem, there must be an x that is in the interval from one to two such that g of x is equal to three-fourths.

And so yes, we can use the intermediate value theorem to say that the equation g of x is equal to three-fourths has a solution, and we are done.

More Articles

View All
15 Lessons Defeat Teaches You
There are two types of people in this world: those who’ve experienced defeat and those who are about to be defeated. Unless, of course, you’re Miyamoto Musashi or Sun Tzu. Even then, we’re talking about legends. Listen, we don’t want to discourage anyone,…
What Motivated Soldiers to Be the First to Climb the Siege Ladder?
Being the first on the wall in a siege often meant certain death. It involved battling through to the wall, climbing an exposed ladder or siege tower through a hail of projectiles, only to meet a superior force of defenders upon reaching the top. Neverthe…
Worked example: Calculating equilibrium concentrations from initial concentrations | Khan Academy
For the reaction bromine gas plus chlorine gas goes to BrCl, Kc is equal to 7.0 at 400 Kelvin. If the initial concentration of bromine is 0.60 Molar and the initial concentration of chlorine is also 0.60 Molar, our goal is to calculate the equilibrium con…
Natural rights, social contract, democracy, republicanism and limited government
The goal of this video is to give an overview of some terms that you will see as we study government. They come out of political philosophy either from the Enlightenment or even well before the Enlightenment. Some of them, these ideas are referred to in s…
3 Mistakes You Make When You're Starting Out (& How to avoid them)
You know, some mistakes are almost unavoidable, especially when you’re just starting out on a new project or business. It takes a lot of trial and error to get to a point where most things you start manage to hit the spot on a consistent basis. These are …
A Discussion With Sal About Systemic Racism
Hi everyone, uh, Sal Khan here from Khan Academy. Welcome to our daily live stream. Uh, for those of y’all who are wondering what this is, you know, this is something we started several months ago as a way to keep us all connected during times of social d…