yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the intermediate value theorem: equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let g of x equal one over x. Can we use the intermediate value theorem to say that there is a value c such that g of c is equal to zero and negative one is less than or equal to c is less than or equal to one?

If so, write a justification.

So in order to even use the intermediate value theorem, you have to be continuous over the interval that you care about, and this interval that we care about is from x equals negative one to one.

And one over x is not continuous over that interval. It is not defined when x is equal to zero.

And so we could say no because g of x is not defined. Not defined, or I could say let me just say not continuous.

It's also not defined at every point of the interval, but let's say not continuous over the closed interval from negative one to one.

And we could even put parentheses: not defined at x is equal to zero.

All right, now let's ask the second question. Can we use the intermediate value theorem to say that the equation g of x is equal to three-fourths has a solution where one is less than or equal to x is less than or equal to two?

If so, write a justification.

All right, so first let's look at the interval. If we're thinking about the interval from one to two, well yeah, our function is going to be continuous over that interval.

So we could say g of x is continuous on the closed interval from one to two.

And if you wanted to put more justification there, you could say g is defined for all real numbers such that x does not equal zero.

I can write g of x is defined for all real numbers such that x does not equal to zero.

And you could say rational functions like one over x are continuous at all points in their domains.

At all points in their domain, that's really establishing that g of x is continuous on that interval.

And then we want to see what values does g take on at the endpoint, or actually these are the endpoints that we're looking at right over here.

g of one is going to be equal to one over one, which is one, and g of two is going to be one over two, which is equal to one over two.

So three-fourths is between g of one and g of two.

So by the intermediate value theorem, there must be an x that is in the interval from one to two such that g of x is equal to three-fourths.

And so yes, we can use the intermediate value theorem to say that the equation g of x is equal to three-fourths has a solution, and we are done.

More Articles

View All
Naming a cycloalkane | Organic chemistry | Khan Academy
Let’s see if we can name this guy right over here. And so, like always, we always want to look for the longest carbon chain or the longest carbon cycle. I think it’s pretty obvious from this picture that we have a very long carbon cycle here that we can s…
Are Daddy Longlegs Spiders? (Re: 8 Animal Misconceptions Rundown)
In my animal misconceptions video, I casually mentioned that daddy long legs aren’t spiders and received a ton of comments asking for clarification or suggesting that it’s not that simple. So I feel the need to clear things up a bit. But first, a disclaim…
Worked example: interval of convergence | Series | AP Calculus BC | Khan Academy
So we have an infinite series here, and the goal of this video is to try to figure out the interval of convergence for this series. That’s another way of saying, for what x values, what range of x values is this series going to converge? And like always, …
Khan Academy learning plans for school closures
The goal of this video is to introduce you to the idea of learning plans on Khan Academy, and I’m going to focus on a plan for sixth grade math. But what I’m talking about is as applicable to fourth grade math as it is to sixth grade math, as it is to som…
What do quadratic approximations look like
In the last couple of videos, I talked about the local linearization of a function. In terms of graphs, there’s a nice interpretation here. If you imagine the graph of a function and you want to approximate it near a specific point, you picture that point…
How to use italics and underlines | Punctuation | Khan Academy
Hello, grammarians! Hello, Paige! Hi, David! So, Paige, have you ever heard of this man Aldus Minucius? I don’t think I have. That’s a pretty cool name, though. His given name was actually Aldo Manuzio. He was a Venetian printer around 1500, and this gu…