yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the intermediate value theorem: equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let g of x equal one over x. Can we use the intermediate value theorem to say that there is a value c such that g of c is equal to zero and negative one is less than or equal to c is less than or equal to one?

If so, write a justification.

So in order to even use the intermediate value theorem, you have to be continuous over the interval that you care about, and this interval that we care about is from x equals negative one to one.

And one over x is not continuous over that interval. It is not defined when x is equal to zero.

And so we could say no because g of x is not defined. Not defined, or I could say let me just say not continuous.

It's also not defined at every point of the interval, but let's say not continuous over the closed interval from negative one to one.

And we could even put parentheses: not defined at x is equal to zero.

All right, now let's ask the second question. Can we use the intermediate value theorem to say that the equation g of x is equal to three-fourths has a solution where one is less than or equal to x is less than or equal to two?

If so, write a justification.

All right, so first let's look at the interval. If we're thinking about the interval from one to two, well yeah, our function is going to be continuous over that interval.

So we could say g of x is continuous on the closed interval from one to two.

And if you wanted to put more justification there, you could say g is defined for all real numbers such that x does not equal zero.

I can write g of x is defined for all real numbers such that x does not equal to zero.

And you could say rational functions like one over x are continuous at all points in their domains.

At all points in their domain, that's really establishing that g of x is continuous on that interval.

And then we want to see what values does g take on at the endpoint, or actually these are the endpoints that we're looking at right over here.

g of one is going to be equal to one over one, which is one, and g of two is going to be one over two, which is equal to one over two.

So three-fourths is between g of one and g of two.

So by the intermediate value theorem, there must be an x that is in the interval from one to two such that g of x is equal to three-fourths.

And so yes, we can use the intermediate value theorem to say that the equation g of x is equal to three-fourths has a solution, and we are done.

More Articles

View All
Using probability to make fair decisions
We’re told that Roberto and Jocelyn decide to roll a pair of fair six-sided dice to determine who has to dust their apartment. If the sum is seven, then Roberto will dust. If the sum is 10 or 11, then Jocelyn will dust. If the sum is anything else, they’l…
Basic derivative rules: find the error | Derivative rules | AP Calculus AB | Khan Academy
So we have two examples here of someone trying to find the derivative of an expression. On the left-hand side, it says Avery tried to find the derivative of 7 - 5x using basic differentiation rules; here is her work. On the right-hand side, it says Hann…
Real Estate Tricks: How To Pay Off Your Home Mortgage FAST
What’s up you guys? It’s Graham here. So here’s a really popular topic of discussion when it comes to real estate, and that is how to pay off your mortgage early. With this video, I will tell you exactly how to do this with ninja real estate secrets and t…
Hyphens vs. dashes | Punctuation | Khan Academy
Hello Garans, hello Paige, hi David. So today we’re going to learn about hyphens and what a hyphen is. It’s a little stick like this, as opposed to a dash which is about twice as long. People confuse them a lot, uh, but they have very different functions.…
How Much Money I Make Selling Merch
What’s up guys? It’s Graham here. So, about 10 months ago, my buddy and I met up for lunch and came up with a wild original concept that’s never been done before here on YouTube: selling merch. After all, it seems like pretty much every YouTuber is doing …
Finding the mean and standard deviation of a binomial random variable | AP Statistics | Khan Academy
We’re told a company produces processing chips for cell phones at one of its large factories. Two percent of the chips produced are defective in some way. A quality check involves randomly selecting and testing 500 chips. What are the mean and standard de…