yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the intermediate value theorem: equation | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let g of x equal one over x. Can we use the intermediate value theorem to say that there is a value c such that g of c is equal to zero and negative one is less than or equal to c is less than or equal to one?

If so, write a justification.

So in order to even use the intermediate value theorem, you have to be continuous over the interval that you care about, and this interval that we care about is from x equals negative one to one.

And one over x is not continuous over that interval. It is not defined when x is equal to zero.

And so we could say no because g of x is not defined. Not defined, or I could say let me just say not continuous.

It's also not defined at every point of the interval, but let's say not continuous over the closed interval from negative one to one.

And we could even put parentheses: not defined at x is equal to zero.

All right, now let's ask the second question. Can we use the intermediate value theorem to say that the equation g of x is equal to three-fourths has a solution where one is less than or equal to x is less than or equal to two?

If so, write a justification.

All right, so first let's look at the interval. If we're thinking about the interval from one to two, well yeah, our function is going to be continuous over that interval.

So we could say g of x is continuous on the closed interval from one to two.

And if you wanted to put more justification there, you could say g is defined for all real numbers such that x does not equal zero.

I can write g of x is defined for all real numbers such that x does not equal to zero.

And you could say rational functions like one over x are continuous at all points in their domains.

At all points in their domain, that's really establishing that g of x is continuous on that interval.

And then we want to see what values does g take on at the endpoint, or actually these are the endpoints that we're looking at right over here.

g of one is going to be equal to one over one, which is one, and g of two is going to be one over two, which is equal to one over two.

So three-fourths is between g of one and g of two.

So by the intermediate value theorem, there must be an x that is in the interval from one to two such that g of x is equal to three-fourths.

And so yes, we can use the intermediate value theorem to say that the equation g of x is equal to three-fourths has a solution, and we are done.

More Articles

View All
The future of YouTube: Is it slowly getting worse and becoming too “Advertiser Friendly?”
What’s up, you guys? It’s Graham here. So this video is gonna be entirely different from anything else I’ve ever uploaded. It’s not about real estate, it’s not about money, it’s not about mindset. I’m talking about YouTube today and why they’re going thro…
Carolynn Levy And Panel (Jon Levy, Jason Kwon) - Startup Legal Mechanics
I would like to introduce my colleague Carolyn Levy to my right here, who’s going to talk about startup mechanics, and then with John Levy and Jason Quan they’ll answer some questions about getting your startup started, legal issues. I will point out that…
Teleportation: Tearing the Fabric of Spacetime
The date is October 23rd, 1593. The governor of the Philippines had just been assassinated a few days after setting off on our journey from Manila. His ship and crew were overthrown by Chinese pirates on board. When the news of his assassination reached t…
HOW TO MAKE EASY MONEY IN THE STOCK MARKET
What’s up? Grandma’s guys here! So, after a year patiently waiting and getting hundreds of comments, DMs, emails, letters, and smoke signals asking me how my stock market investments are doing, the time has finally come to reveal exactly how much money I …
Potting Chestnuts | Live Free or Die: How to Homestead
[Music] Today I’m going to show you how to move these germinating Chestnut seeds to another location that’s more conducive to growing them out to maturity. This is optimum size for planting. Once they get this big, they get to be kind of unruly. But, um, …
Curvature of a helix, part 2
So where we left off, we were looking at this parametric function for a three-dimensional curve and what it draws. I showed you was a helix in three-dimensional space, and we’re trying to find its curvature. The way you think about that is you have a circ…