yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Integrating power series | Series | AP Calculus BC | Khan Academy


4m read
·Nov 11, 2024

So we're told that ( f(x) ) is equal to the infinite series we're going from ( n = 1 ) to infinity of ( \frac{n + 1}{4^{n + 1}} x^n ). What we want to figure out is what is the definite integral from 0 to 1 of this ( f(x) ). And like always, if you feel inspired, I encourage you to feel inspired, pause the video, and see if you can work through this on your own. Or at any time while I'm working through it, pause it and try to keep on going.

Alright, well, let's just rewrite this a little bit. This is going to be the same thing as the integral from 0 to 1. ( f(x) ) is this series, so I could write the sum from ( n = 1 ) to infinity of ( \frac{n + 1}{4^{n + 1}} x^n ). Now what I'm about to do might be the thing that might be new to some of you, but this is essentially taking a definite integral of a sum of terms, and that's the same thing as taking the sum of a bunch of definite integrals. Let me make that clear.

So if I had a, let's say this is a definite integral from 0 to 1, and let's say I had a bunch of terms here, I could even call them functions. Let's say it was ( g(x) + h(x) ), and I just kept going on and on and on ( dx ). Well, this is the same thing as the sum of the integrals: the integral from 0 to 1 of ( g(x) , dx + ) the integral from 0 to 1 of ( h(x) , dx + ) and we go on and on and on forever, however many of these terms are. This comes straight out of our integration properties.

So we can do the exact same thing here, although we'll just do it with the sigma notation. This is going to be equal to the sum from ( n = 1 ) to infinity of the integral, the definite integral of each of these terms. So I'm going to write it like this: the integral from 0 to 1 of ( \frac{n + 1}{4^{n + 1}} x^n , dx ).

So once again, now we're taking the sum of each of these terms. So, let's evaluate this business right over here. So that is going to, I'll just keep writing it out, this is going to be equal to the sum from ( n = 1 ) to infinity, and then the stuff that I just underlined in orange. This is going to be, let's see, we take the anti-derivative here, we are going to get ( \frac{x^{n + 1}}{n + 1} ).

So we have this original ( \frac{n + 1}{4^{n + 1}} ), and that's just a constant when we think in terms of ( x ) for any one of these terms. And then here, we'd want to increment the exponent and then divide by that incremented exponent. This just comes out of, I often call it the inverse pi or the anti-power rule or reversing the power rule. So it's ( \frac{x^{n + 1}}{n + 1} ). I just took the anti-derivative, and we're going to go from 0 to 1 for each of these terms.

Before we do that, we can simplify. We have an ( n + 1 ), we have an ( n + 1 ), and so we can rewrite all of this. This is going to be the same thing. We're going to take the sum from ( n = 1 ) to infinity, and this is going to be what we have in here when ( x ) is equal to 1. It is 1. We could write ( \frac{1^{n + 1}}{4^{n + 1}} ) actually. Why don't I write it that way?

( \frac{1}{1^{n + 1}} 4^{n + 1}} - 0^{n + 1} over 4^{n + 1} ). So we're not going to even have to write that. I could write ( \frac{0^{n + 1}}{4^{n + 1}} ), but this is clearly just 0.

And then this, and this is starting to get nice and simple. Now this is going to be the same thing. This is equal to the sum from ( n = 1 ) to infinity of ( \frac{1}{4^{n + 1}} ). Now you might immediately recognize this; this is an infinite geometric series. What is the first term here?

Well, the first term, first first term is, well, when ( n ) is equal to 1, the first term here is ( \frac{1}{4^2} ). Did I do that right? Yeah. When ( n ) is equal to 1, it's going to be so this is going to be ( \frac{1}{4^2} ), which is equal to ( \frac{1}{16} ). So that's our first term.

And then our common ratio here, well that's going to be, well we're going to keep multiplying by ( \frac{1}{4} ). So our common ratio here is ( \frac{1}{4} ). And so for an infinite geometric series, since our common ratio, well, is less than or it's, its absolute value is less than one, we know that this is going to converge, and it's going to converge to the value. Our first term ( \frac{1}{16} ) divided by one minus the common ratio ( 1 - \frac{1}{4} ).

So this is ( \frac{3}{4} ). So it's equal to ( \frac{1}{16} \times \frac{4}{3} ). So ( \frac{1}{12} ). And we're done! This seemed really daunting at first, but we just had to realize, okay, an integral of a sum, even an infinite sum, well that's going to be the sum of these infinite integrals. We take the anti-derivative of these infinite integrals which we were able to do, which is kind of a cool thing—one of the powers of symbolic mathematics. And then we realized, oh, we just have an infinite geometric series which we know how to find the sum of, and we're done.

More Articles

View All
Print statements and adding values | Intro to CS - Python | Khan Academy
Programs manipulate data in the forms of integers, floats, booleans, and strings. But how do they manipulate data? Perhaps the most obvious thing we can do here is add values together. But in order to do that, we’ll need the plus operator. In programming…
The Lost Colony of Roanoke - settlement and disappearance
So that takes us to our third and what will be final expedition to the new world. And this is where the spooky part comes in. This is where the spooky part comes in. Sir Walter Raleigh and John White realized that a whole group of soldiers was probably no…
Turning Sound Into Music—Why Do We Do It? | Short Film Showcase
What is sound? Uh, what is sound? Sound is just a cross-modal version of touch in a way, and that there are these waves that sort of move through the air, and they get in your ear and they actually hit the eardrum, and they push it back and forth. And so …
Shark Tank Star's Secret Identity EXPOSED | Ask Mr. Wonderful #23 Kevin O'Leary & Daymond John
[Music] Oh [Music] [Music] Throughout that far [Music] Damon, we’ve been together on Shark Tank forever. What have you learned now after spending ten years on the show? What’s different now? What’s changed for you? The quality of the deals are much diffe…
The greenhouse effect | Physics | Khan Academy
Our Earth’s surface temperature is somewhere close to 15° C—nice, cozy, and warm for us living beings. But what keeps us so warm? Well, my instinctive answer is that it’s the sun, right? But it actually gets more interesting. Our atmosphere has these gase…
2015 AP Chemistry free response 2a (part 2/2) and b | Chemistry | Khan Academy
All right, now let’s tackle, in the last video we did the first part of Part A. Now let’s do the second part of Part A. So the second part of Part A, they say calculate the number of moles of ethine that would be produced if the dehydration reaction went…