yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Applying the chain rule twice | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that y is equal to sine of x squared to the third power, which of course we could also write as sine of x squared to the third power. What we're curious about is what is the derivative of this with respect to x? What is dy/dx, which we could also write as y prime?

Well, there's a couple of ways to think about it. This isn't a straightforward expression here, but you might notice that I have something being raised to the third power. In fact, if we look at the outside of this expression, we have some business in here and it's being raised to the third power.

One way to tackle this is to apply the chain rule. So, if we apply the chain rule, it's going to be the derivative of the outside with respect to the inside, or the something to the third power. The derivative of the something to the third power with respect to that something is going to be 3 times that something squared times the derivative with respect to x of that something. In this case, the something is sine.

Let me write that in blue color. It is sine of x squared. It is sine of x squared! No matter what was inside of these orange parentheses, I would put it inside of the orange parentheses and these orange brackets right over here. We learned that in the chain rule, so let's see.

We know this is just a matter of algebraic simplification, but the second part we need to now take the derivative of sine of x squared. Well, now we would want to use the chain rule again. So, I'm going to take the derivative. It’s sine of something, so this is going to be the derivative of this is going to be the sine of something with respect to something.

That is cosine of that something times the derivative with respect to x of the something. In this case, the something is x squared. And of course, we have all of this out front, which is the 3 times sine of x squared, and I could write it like this squared.

All right, so we're getting close. Now we just have to figure out the derivative with respect to x of x squared. We've seen that many times before; we just use the power rule. That's going to be 2x.

So if we wanted to write the dy/dx, we get a little bit of a mini drum roll here. This didn't take us too long! dy/dx—I'll multiply the 3 times the 2x, which is going to be 6x.

So I covered those so far times sine squared of x squared times cosine of x squared, and we are done with applying the chain rule multiple times!

More Articles

View All
15 Personal Finance Lessons Everyone Wishes They Knew Sooner
You know how they say it’s never too late? Well, that’s not entirely true, right? Sometimes it is too late, and you do not want to be that person who has that kind of realization. A survey by Bankrate found that 57% of people in the US feel behind on thei…
Restoring the River's Flow | DamNation
Dropped my gear off, schlepped it all out over the fence, drove back down, parked the van, got on my bicycle, rode up there, stashed it. Gl’s canyons near vertical; it’s very steep, it’s dark, it’s a damp slippery dam with a 200t abyss right below. So we’…
The Discovery That Transformed Pi
This video is about the ridiculous way we used to calculate Pi. For 2000 years, the most successful method was painstakingly slow and tedious, but then Isaac Newton came along and changed the game. You could say he speed-ran Pi, and I’m gonna show you how…
Methods for preparing buffers | Acids and bases | AP Chemistry | Khan Academy
Let’s look at two different methods for preparing buffer solutions. In the first method, we’re going to add an aqueous solution of a strong base, sodium hydroxide, to an aqueous solution of a weak acid, acetic acid. Our goal is to calculate the pH of the…
See the 1,000-Year-Old Windmills Still in Use Today | National Geographic
There are ancient windmills in Nashtifan Village, which is located in the northeast part of Iran. What makes Nashtifan’s ancient windmills unique is that they are still operational. One of the main characteristics of the area is the strong winds that blow…
Seneca | Why Worry About What Isn't Real? (Stoicism)
In a letter to his dear friend Lucilius, Stoic philosopher Seneca wrote: “There are more things, Lucilius, likely to frighten us than there are to crush us; we suffer more often in imagination than in reality.” End quote. Chronic worriers tend to be more …