yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Applying the chain rule twice | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that y is equal to sine of x squared to the third power, which of course we could also write as sine of x squared to the third power. What we're curious about is what is the derivative of this with respect to x? What is dy/dx, which we could also write as y prime?

Well, there's a couple of ways to think about it. This isn't a straightforward expression here, but you might notice that I have something being raised to the third power. In fact, if we look at the outside of this expression, we have some business in here and it's being raised to the third power.

One way to tackle this is to apply the chain rule. So, if we apply the chain rule, it's going to be the derivative of the outside with respect to the inside, or the something to the third power. The derivative of the something to the third power with respect to that something is going to be 3 times that something squared times the derivative with respect to x of that something. In this case, the something is sine.

Let me write that in blue color. It is sine of x squared. It is sine of x squared! No matter what was inside of these orange parentheses, I would put it inside of the orange parentheses and these orange brackets right over here. We learned that in the chain rule, so let's see.

We know this is just a matter of algebraic simplification, but the second part we need to now take the derivative of sine of x squared. Well, now we would want to use the chain rule again. So, I'm going to take the derivative. It’s sine of something, so this is going to be the derivative of this is going to be the sine of something with respect to something.

That is cosine of that something times the derivative with respect to x of the something. In this case, the something is x squared. And of course, we have all of this out front, which is the 3 times sine of x squared, and I could write it like this squared.

All right, so we're getting close. Now we just have to figure out the derivative with respect to x of x squared. We've seen that many times before; we just use the power rule. That's going to be 2x.

So if we wanted to write the dy/dx, we get a little bit of a mini drum roll here. This didn't take us too long! dy/dx—I'll multiply the 3 times the 2x, which is going to be 6x.

So I covered those so far times sine squared of x squared times cosine of x squared, and we are done with applying the chain rule multiple times!

More Articles

View All
Buddhism: context and comparison | World History | Khan Academy
We’ve already had many videos on Buddhism and its connections to Hinduism, but what we want to do in this video is more explicitly answer an important question: Why did Buddhism emerge when and where it did? This is a question that you should always be as…
Homeroom with Sal & Vas Narasimhan - Wednesday, July 8
Hi everyone! Welcome to our homeroom live stream. I’m very excited about the conversation we’re going to have in a few minutes. But before that, I will give my standard announcement: a reminder that Khan Academy is a not-for-profit organization with a mis…
Indefinite Pronouns | The parts of speech | Grammar | Khan Academy
Hey grammarians! Today, I want to talk about the idea of the indefinite pronoun, which looks kind of complicated, but really just does what it says on the tin. An indefinite pronoun is just that: it’s indefinite, undefined, uncertain. These are pronouns t…
Half-life | Physics | Khan Academy
This is a Neanderthal skull. Neanderthals are an extinct species of humans, and we believe they went extinct about 35 to 40,000 years ago. This is Earth, and we believe Earth to be about 4.5 billion years old. But my question was always, how do we know th…
The Biggest Ideas in Philosophy
In the city of Cyprus in 300 BC, there lived a very wealthy traitor called Zeno. While on a voyage from Phenicia to Perez, his boat sank along with all of his cargo. Because of that single event, an event that was entirely out of Xeno’s or anyone’s contro…
The Rules for Rulers
[Ominous music plays] Do you want to rule? Do you see the problems in your country and know how to fix them? If only you had the power to do so. Well, you’ve come to the right place. But before we begin this lesson in political power, ask yourself: why d…