yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Applying the chain rule twice | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that y is equal to sine of x squared to the third power, which of course we could also write as sine of x squared to the third power. What we're curious about is what is the derivative of this with respect to x? What is dy/dx, which we could also write as y prime?

Well, there's a couple of ways to think about it. This isn't a straightforward expression here, but you might notice that I have something being raised to the third power. In fact, if we look at the outside of this expression, we have some business in here and it's being raised to the third power.

One way to tackle this is to apply the chain rule. So, if we apply the chain rule, it's going to be the derivative of the outside with respect to the inside, or the something to the third power. The derivative of the something to the third power with respect to that something is going to be 3 times that something squared times the derivative with respect to x of that something. In this case, the something is sine.

Let me write that in blue color. It is sine of x squared. It is sine of x squared! No matter what was inside of these orange parentheses, I would put it inside of the orange parentheses and these orange brackets right over here. We learned that in the chain rule, so let's see.

We know this is just a matter of algebraic simplification, but the second part we need to now take the derivative of sine of x squared. Well, now we would want to use the chain rule again. So, I'm going to take the derivative. It’s sine of something, so this is going to be the derivative of this is going to be the sine of something with respect to something.

That is cosine of that something times the derivative with respect to x of the something. In this case, the something is x squared. And of course, we have all of this out front, which is the 3 times sine of x squared, and I could write it like this squared.

All right, so we're getting close. Now we just have to figure out the derivative with respect to x of x squared. We've seen that many times before; we just use the power rule. That's going to be 2x.

So if we wanted to write the dy/dx, we get a little bit of a mini drum roll here. This didn't take us too long! dy/dx—I'll multiply the 3 times the 2x, which is going to be 6x.

So I covered those so far times sine squared of x squared times cosine of x squared, and we are done with applying the chain rule multiple times!

More Articles

View All
Assassination politics: Not inevitable
In my previous video, I described Jim Bell’s idea of assassination politics and said that I agreed with him that the emergence of such a system seemed inevitable. Thanks to the user, peace requires anarchy. I’ve since read an article by Bob Murphy, which …
The Lagrangian
All right, so today I’m going to be talking about the Lagrange multipliers. Now, we’ve talked about Lagrange multipliers; this is a highly related concept. In fact, it’s not really teaching anything new; this is just repackaging stuff that we already know…
shower thoughts that actually make sense..
Somewhere on Earth, in a random corner of the world—well, actually, the Earth is round, so there aren’t really corners—but in a random corner of the world, there’s a worm. Just a single worm, and he holds the world record for digging deeper into the Earth…
3D Photographs Of Things We Have Lost
Just a few years after this photograph was taken, the quagga, a subspecies of zebra, was hunted to extinction. This is actually one of the final two photographs ever taken of the quagga; the other was taken at the exact same moment, just a few inches to t…
Functions defined by definite integrals (accumulation functions) | AP Calculus AB | Khan Academy
You’ve already spent a lot of your mathematical lives talking about functions. The basic idea is: give a valid input into a function, so a member of that function’s domain, and then the function is going to tell you for that input what is going to be the …
The Deutsch Files III
On exactly that, the fact that the more that we summarize what I think is an exceedingly clear body of work in the fabric of reality in the beginning of infinity, when nonetheless you explain it to people as POA says, you know it’s impossible to speak in …