yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Applying the chain rule twice | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that y is equal to sine of x squared to the third power, which of course we could also write as sine of x squared to the third power. What we're curious about is what is the derivative of this with respect to x? What is dy/dx, which we could also write as y prime?

Well, there's a couple of ways to think about it. This isn't a straightforward expression here, but you might notice that I have something being raised to the third power. In fact, if we look at the outside of this expression, we have some business in here and it's being raised to the third power.

One way to tackle this is to apply the chain rule. So, if we apply the chain rule, it's going to be the derivative of the outside with respect to the inside, or the something to the third power. The derivative of the something to the third power with respect to that something is going to be 3 times that something squared times the derivative with respect to x of that something. In this case, the something is sine.

Let me write that in blue color. It is sine of x squared. It is sine of x squared! No matter what was inside of these orange parentheses, I would put it inside of the orange parentheses and these orange brackets right over here. We learned that in the chain rule, so let's see.

We know this is just a matter of algebraic simplification, but the second part we need to now take the derivative of sine of x squared. Well, now we would want to use the chain rule again. So, I'm going to take the derivative. It’s sine of something, so this is going to be the derivative of this is going to be the sine of something with respect to something.

That is cosine of that something times the derivative with respect to x of the something. In this case, the something is x squared. And of course, we have all of this out front, which is the 3 times sine of x squared, and I could write it like this squared.

All right, so we're getting close. Now we just have to figure out the derivative with respect to x of x squared. We've seen that many times before; we just use the power rule. That's going to be 2x.

So if we wanted to write the dy/dx, we get a little bit of a mini drum roll here. This didn't take us too long! dy/dx—I'll multiply the 3 times the 2x, which is going to be 6x.

So I covered those so far times sine squared of x squared times cosine of x squared, and we are done with applying the chain rule multiple times!

More Articles

View All
Partial derivatives of vector fields, component by component
Let’s continue thinking about partial derivatives of vector fields. This is one of those things that’s pretty good practice for some important concepts coming up in multivariable calculus, and it’s also just good to sit down and take a complicated thing a…
The Wonders of Urban Wildlife | Podcast | Overheard at National Geographic
So I’m a solo hiker. I prefer to hike alone, and I’m a meanderer, so I have no idea where I’m going. It’s July 2021, and I’m meandering with Danielle Lee, a biology professor at Southern Illinois University Edwardsville. We are in our neighborhood in Nort…
Are Helicopters Gyroscopes? - Smarter Every Day 48
Hey, it’s me, Destin. Welcome to Smarter Every Day. So, you know you’re in trouble when you have to break out the tinker toys to explain a concept. What are you gonna build? (son) Tinker toy ducks, scrod and rolls over your ham. [??] Good idea. What are …
WATCH THIS Before Building Multiple Income Streams
It’s been constantly said that in order to get really wealthy, you need to have multiple streams of income. We’ve also mentioned this in past videos. Ideally, you should aim to have around three to seven individual streams of income to be safe. But here’s…
Introduction to entropy | Applications of thermodynamics | AP Chemistry | Khan Academy
The concept of entropy is related to the idea of microstates. To think about microstates, let’s consider one mole of an ideal gas. Remember, n represents moles at a specific pressure, volume, and temperature. If the system of gas particles is at equilibri…
GPT-4o (Omni) Human interaction demo w/ Sal Khan
Hello there! Can you see us? Yes, I can see you. How can I assist you today? So, um, I’m here with my son, and I’d love to see if you could drive a conversation that could help us get to know each other better. So, ask us questions and also ask us follo…