yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Applying the chain rule twice | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that y is equal to sine of x squared to the third power, which of course we could also write as sine of x squared to the third power. What we're curious about is what is the derivative of this with respect to x? What is dy/dx, which we could also write as y prime?

Well, there's a couple of ways to think about it. This isn't a straightforward expression here, but you might notice that I have something being raised to the third power. In fact, if we look at the outside of this expression, we have some business in here and it's being raised to the third power.

One way to tackle this is to apply the chain rule. So, if we apply the chain rule, it's going to be the derivative of the outside with respect to the inside, or the something to the third power. The derivative of the something to the third power with respect to that something is going to be 3 times that something squared times the derivative with respect to x of that something. In this case, the something is sine.

Let me write that in blue color. It is sine of x squared. It is sine of x squared! No matter what was inside of these orange parentheses, I would put it inside of the orange parentheses and these orange brackets right over here. We learned that in the chain rule, so let's see.

We know this is just a matter of algebraic simplification, but the second part we need to now take the derivative of sine of x squared. Well, now we would want to use the chain rule again. So, I'm going to take the derivative. It’s sine of something, so this is going to be the derivative of this is going to be the sine of something with respect to something.

That is cosine of that something times the derivative with respect to x of the something. In this case, the something is x squared. And of course, we have all of this out front, which is the 3 times sine of x squared, and I could write it like this squared.

All right, so we're getting close. Now we just have to figure out the derivative with respect to x of x squared. We've seen that many times before; we just use the power rule. That's going to be 2x.

So if we wanted to write the dy/dx, we get a little bit of a mini drum roll here. This didn't take us too long! dy/dx—I'll multiply the 3 times the 2x, which is going to be 6x.

So I covered those so far times sine squared of x squared times cosine of x squared, and we are done with applying the chain rule multiple times!

More Articles

View All
15 Monthly Investments To Make for a Richer Life
If you’re here because you think this is all about how you can get the biggest return on your investment in the shortest time possible, think again. Okay, that’s the dream, but we all know that big returns in a short time are a gamble, and a rich life isn…
The Theme System Journal
Hello internet! If you didn’t already know, I’m a big fan of the yearly theme: a broad rainbow above your goals to help direct you on part of your journey through this life. And yes, I know exactly how that sounds. But if you’re intrigued and/or wondering…
How To Live In The Social Media Matrix
This is the challenge, right? We’re all living in this society where these very large and powerful businesses need us all to post a lot. We have to ask ourselves the question: what is the value exchange, and how maybe are we—how do we be careful we’re not…
How To Upgrade Your Friends
They say that if you hang out with five millionaires, you will be the sixth. But this is also true when it comes to surrounding yourself with intelligent people. Whether we accept it or not, we are the average of the five people we spend most of our time …
Intermediate value theorem | Existence theorems | AP Calculus AB | Khan Academy
What we’re going to cover in this video is the Intermediate Value Theorem, which despite some of this mathy language, you’ll see is one of the more intuitive theorems, possibly the most intuitive theorem you will come across in a lot of your mathematical …
16 minutes of even more useless information..
Time flies like an arrow, but fruit flies like a banana. I mean, fruit flies don’t fly like a banana. Even bananas probably don’t fly like bananas. Not like I’ve seen a banana fly. Have you seen? I’m just saying that fruit flies like a banana. Okay, I’m s…