yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Applying the chain rule twice | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that y is equal to sine of x squared to the third power, which of course we could also write as sine of x squared to the third power. What we're curious about is what is the derivative of this with respect to x? What is dy/dx, which we could also write as y prime?

Well, there's a couple of ways to think about it. This isn't a straightforward expression here, but you might notice that I have something being raised to the third power. In fact, if we look at the outside of this expression, we have some business in here and it's being raised to the third power.

One way to tackle this is to apply the chain rule. So, if we apply the chain rule, it's going to be the derivative of the outside with respect to the inside, or the something to the third power. The derivative of the something to the third power with respect to that something is going to be 3 times that something squared times the derivative with respect to x of that something. In this case, the something is sine.

Let me write that in blue color. It is sine of x squared. It is sine of x squared! No matter what was inside of these orange parentheses, I would put it inside of the orange parentheses and these orange brackets right over here. We learned that in the chain rule, so let's see.

We know this is just a matter of algebraic simplification, but the second part we need to now take the derivative of sine of x squared. Well, now we would want to use the chain rule again. So, I'm going to take the derivative. It’s sine of something, so this is going to be the derivative of this is going to be the sine of something with respect to something.

That is cosine of that something times the derivative with respect to x of the something. In this case, the something is x squared. And of course, we have all of this out front, which is the 3 times sine of x squared, and I could write it like this squared.

All right, so we're getting close. Now we just have to figure out the derivative with respect to x of x squared. We've seen that many times before; we just use the power rule. That's going to be 2x.

So if we wanted to write the dy/dx, we get a little bit of a mini drum roll here. This didn't take us too long! dy/dx—I'll multiply the 3 times the 2x, which is going to be 6x.

So I covered those so far times sine squared of x squared times cosine of x squared, and we are done with applying the chain rule multiple times!

More Articles

View All
The Housing Market Is Sinking
What’s up you guys? It’s Graham here. So let’s talk about something that I’m sure most of us have considered in some way or another, and that would be the next housing crash. After all, in the last month, housing prices have continued to hit record high a…
Investigating Plastic Surgery Clinics | Trafficked with Mariana van Zeller
[suspenseful music] BLONDE WOMAN (VOICEOVER): Until recently, the high cost of plastic surgery meant that the only option for some patients seeking exaggerated curves were underground procedures like the silicone shots I witnessed in Atlanta. So this is …
Slinky Drop Extended
All right, you’ve made your prediction, and we’ve tied a tennis ball to the base of the Slinky. Here, and now we’re going to extend it and drop it, and see what happens to the tennis ball. The heavy weight of the tennis ball is going to stretch the spring…
How To Become A Millionaire: Index Fund Investing For Beginners
What’s up you guys, it’s Graham here. So let’s cover one of my favorite ways to invest ever, besides real estate. I would even go so far as to say that this is the best, safest, and easiest long-term investment strategy out there for most people. Also, th…
Rounding to the nearest 100
At this point, you are likely already familiar with the idea of rounding. Probably, you have had some practice rounding to the nearest 10. Now, we’re going to do another type of rounding. We are now going to round to the nearest 100. So, let’s just start …
How More Efficient Fishing Can Protect the Ocean | National Geographic
[Music] All the management strategies that we have today were really developed thousands of years ago by the Pacific Islanders. Things like closed areas, closed seasons for spawning, minimum size [Music] limits. Somebody would say, like, “Oh, he’s a fishe…