yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Zeros of polynomials: matching equation to graph | Polynomial graphs | Algebra 2 | Khan Academy


2m read
·Nov 10, 2024

We are asked what could be the equation of p, and we have the graph of our polynomial p right over here. You could view this as the graph of y is equal to p of x. So pause this video and see if you can figure that out.

All right, now let's work on this together. You can see that all the choices have p of x in factored form, where it's very easy to identify the zeros or the x values that would make our polynomial equal to zero. We could also look at this graph and we can see what the zeros are. This is where we're going to intersect the x-axis, also known as the x-intercepts.

So you can see when x is equal to negative 4, we have a 0 because our polynomial is 0 there. So we know p of negative 4 is equal to 0. We also know that p of, it looks like 1 and a half, or I could say 3 halves, p of 3 halves is equal to 0. And we also know that p of 3 is equal to 0.

So let's look for an expression where that is true. Because it's in factored form, each of the parts of the product will probably make our polynomial zero for one of these zeros.

So let's see if, in order for our polynomial to be equal to zero when x is equal to negative four, we probably want to have a term that has an x plus four in it. Or we want to have, I should say, a product that has an x plus four in it because x plus four is equal to 0 when x is equal to negative 4. Well, we have an x plus 4 there, and we have an x plus 4 there. So I'm liking choices B and D so far.

Now for this second root, we have p of three halves is equal to zero. So I would look for something like x minus three halves in our product. I don't see an x minus three halves here, but as we've mentioned in other videos, you can also multiply these times constants.

So if I were to multiply, let's see, if I to get rid of this fraction here, if I multiply by 2, this would be the same thing as, let me scroll down a little bit, the same thing as 2x minus 3. And you could test that out; 2x minus 3 is equal to 0 when x is equal to 3 halves. And let's see, we have a 2x minus 3 right over there. So choice D is looking awfully good.

But let's just verify it with this last one. For p of 3 to be equal to 0, we could have an expression like x minus 3 in the product because this is equal to 0 when x is equal to 3. And we indeed have that right over there.

So choice D is looking very good. When x is equal to negative four, this part of our product is equal to zero, which makes the whole thing equal to zero. When x is equal to three halves, 2x minus three is equal to zero, which makes the entire product equal to zero. And when x is equal to three, it makes x minus three equal to zero. Zero times something times something is going to be equal to zero.

More Articles

View All
Vector word problem: resultant force | Vectors | Precalculus | Khan Academy
We’re told that a metal ball lies on a flat horizontal surface. It is attracted by two magnets placed around it. We’re told that the first magnet’s force on the ball is five newtons. We’re then told the second magnet’s force on the ball is three newtons i…
Virtual Girlfriends!! And Other VSAUCE WTFs
Hey, Vsauce! Michael here, and I’ve got some good news. Today, I’m bringing you a bunch of Vsauce WTFs, and hey, those always make people happy. First, a replay from Pro Evolution Soccer 2008. The goalie stops the ball, and as we move forward frame by fr…
The Rarity or Probability of a Miracle | The Story of God
How do you define a miracle? How rare does an event have to be before we would call it miraculous? One in a million? One in a billion? If a miraculous thing is something that happens one in a billion times, it happens all the time. Because with six billi…
Countries inside Countries
When it comes to neighbors, most countries have several options: like North to Canada or South to Mexico. But there are countries that don’t have this freedom of choice, not because they’re islands but because they’re trapped in another country. For examp…
Share your career story with Khan Academy for our new series
Hi, I’m Sal Khan, founder of the Khan Academy, and I’m here to invite you to participate in an exciting project that we have around career. Our mission statement as a not-for-profit is to provide a free, world-class education for anyone, anywhere, and par…
Dating apps are more dangerous than you think
A couple of weeks ago, I was having dinner with a friend and overheard what had to be a first date at the table right next to us. The conversation was awkward at first, as they both seemed to struggle to get a good flow going. I looked over a bit later to…