yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Zeros of polynomials: matching equation to graph | Polynomial graphs | Algebra 2 | Khan Academy


2m read
·Nov 10, 2024

We are asked what could be the equation of p, and we have the graph of our polynomial p right over here. You could view this as the graph of y is equal to p of x. So pause this video and see if you can figure that out.

All right, now let's work on this together. You can see that all the choices have p of x in factored form, where it's very easy to identify the zeros or the x values that would make our polynomial equal to zero. We could also look at this graph and we can see what the zeros are. This is where we're going to intersect the x-axis, also known as the x-intercepts.

So you can see when x is equal to negative 4, we have a 0 because our polynomial is 0 there. So we know p of negative 4 is equal to 0. We also know that p of, it looks like 1 and a half, or I could say 3 halves, p of 3 halves is equal to 0. And we also know that p of 3 is equal to 0.

So let's look for an expression where that is true. Because it's in factored form, each of the parts of the product will probably make our polynomial zero for one of these zeros.

So let's see if, in order for our polynomial to be equal to zero when x is equal to negative four, we probably want to have a term that has an x plus four in it. Or we want to have, I should say, a product that has an x plus four in it because x plus four is equal to 0 when x is equal to negative 4. Well, we have an x plus 4 there, and we have an x plus 4 there. So I'm liking choices B and D so far.

Now for this second root, we have p of three halves is equal to zero. So I would look for something like x minus three halves in our product. I don't see an x minus three halves here, but as we've mentioned in other videos, you can also multiply these times constants.

So if I were to multiply, let's see, if I to get rid of this fraction here, if I multiply by 2, this would be the same thing as, let me scroll down a little bit, the same thing as 2x minus 3. And you could test that out; 2x minus 3 is equal to 0 when x is equal to 3 halves. And let's see, we have a 2x minus 3 right over there. So choice D is looking awfully good.

But let's just verify it with this last one. For p of 3 to be equal to 0, we could have an expression like x minus 3 in the product because this is equal to 0 when x is equal to 3. And we indeed have that right over there.

So choice D is looking very good. When x is equal to negative four, this part of our product is equal to zero, which makes the whole thing equal to zero. When x is equal to three halves, 2x minus three is equal to zero, which makes the entire product equal to zero. And when x is equal to three, it makes x minus three equal to zero. Zero times something times something is going to be equal to zero.

More Articles

View All
Caught in a Bat Tornado | Expedition Raw
If I’d reach my hand up right now, I could probably catch ten back. We were literally surrounded; millions of bats about us, running into us. Unbelievable! It’s so incredible! We have 20 million bats all coming out of a cave at the same time. Perhaps one …
The Upcoming Stock Market Collapse | Round 2
What’s up? Grandma’s guys here. So, as usual, the market makes absolutely no sense and continues proving time and time again that anything can happen. For example, even though the NASDAQ just narrowly avoided its worst January ever in history, when asked …
Expressing a quadratic form with a matrix
Hey guys, there’s one more thing I need to talk about before I can describe the vectorized form for the quadratic approximation of multivariable functions, which is a mouthful to say. So let’s say you have some kind of expression that looks like ( ax^2 ).…
Importing modules | Intro to CS - Python | Khan Academy
If you were building a bike, you would probably go off and get a seat, a set of handlebars, a set of tires, and then assemble those pieces together. You wouldn’t harvest your own rubber and try and forge a tire from scratch. With programming, we do the sa…
Stunning Stone Monuments of Petra | National Geographic
Deep within Jordan’s desert canyons lies an ancient treasure: the stone city of Petra. This massive hand-carved metropolis provides a window into an ancient civilization. A hidden network of tombs, monuments, and elaborate religious structures are carved …
The U.S. Economy Just Hit a Major “Inflection Point” (Ray Dalio Interview)
Ray, back in September you said that the United States you think will be facing a debt crisis. Do you still think that that’s the case? Ray Dalia is currently predicting that the US economy is at a critical inflection point in relation to its ongoing debt…