yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sampling distribution of sample proportion part 2 | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

This right over here is a scratch pad on Khan Academy created by Khan Academy user Charlotte Allen. What you see here is a simulation that allows us to keep sampling from our gumball machine and start approximating the sampling distribution of the sample proportion.

So, her simulation focuses on green gumballs, but we talked about yellow before. In the yellow gumballs, we said 60 were yellow, so let's make 60 percent here green. Then let's take samples of 10, just like we did before, and then let's just start with one sample.

So, we're going to draw one sample, and what we want to show is we want to show the percentages, which is the proportion of each sample that are green. So, if we draw that first sample, notice out of the 10, 5 ended up being green, and then it plotted that right over here under 50 percent. We have one situation where 50 were green.

Now let's do another sample. So, this sample 60 are green, and so let's keep going. Let's draw another sample, and now that one we have, we have 50 are green. So, notice now we see here on this distribution two of them had 50 green. We could keep drawing samples, and let's just really increase, so we're going to do 50 samples of 10 at a time.

So here we can quickly get to a fairly large number of samples, and here we're over a thousand samples. What's interesting here is we're seeing experimentally that our sample, the mean of our sample proportion here is 0.62. What we calculated a few minutes ago was that it should be 0.6.

We also see that the standard deviation of our sample proportion is 0.16, and what we calculated was approximately 0.15. As we draw more and more samples, we should get even closer and closer to those values, and we see that for the most part we are getting closer and closer. In fact, now that it's rounded, we're at exactly those values that we had calculated before.

Now, one interesting thing to observe is when your population proportion is not too close to zero and not too close to one, this looks pretty close to a normal distribution. That makes sense because we saw the relation between the sampling distribution of the sample proportion and a binomial random variable.

But what if our population proportion is closer to zero? So, let's say our population proportion is 10, 0.1. What do you think the distribution is going to look like then? Well, we know that the mean of our sampling distribution is going to be 10, and so you can imagine that the distribution is going to be right skewed. But let's actually see that.

So here we see that our distribution is indeed right skewed, and that makes sense because you can only get values from 0 to 1. If your mean is closer to zero, then you're going to see the meat of your distribution here, and then you're going to see a long tail to the right, which creates that right skew.

If your population proportion was close to one, well, you can imagine the opposite is going to happen. You're going to end up with a left skew, and we indeed see right over here a left skew. Now, the other interesting thing to appreciate is the larger your samples, the smaller the standard deviation.

So, let's do a population proportion that is right in between. So here this is similar to what we saw before; this is looking roughly normal. But now, and that's when we had a sample size of 10, but what if we have a sample size of 50 every time?

Well, notice now it looks like a much tighter distribution. This isn't even going all the way to one yet, but it is a much tighter distribution. The reason why that made sense, the standard deviation of your sample proportion is inversely proportional to the square root of n, and so that makes sense.

So hopefully, you have a good intuition now for the sample proportion, its distribution, the sampling distribution of the sample proportion, that you can calculate its mean and its standard deviation, and you feel good about it because we saw it in a simulation.

More Articles

View All
This Is Why Discord Is Dangerous
On the 13th of April 2023, a 21 year old member of the U.S Air Force National Guard, Jack Tashira, was arrested on live TV for leaking classified documents. Tashira had shared classified information about the war in Ukraine with his Discord group, Thug Sh…
15 Things Not Worth Your Time
Today, we’re focusing on saving your most precious asset: time. We’ve compiled a list of 15 things that are simply not worth the seconds ticking away on your life’s clock. Let’s dive in. Welcome to Alux. First up, chasing approval. Chasing approval is a …
Embark Trucks' Application Video for YC W16
Hi, I’m Alex. This is Brandon and Mike, and together with our trusty prototype Marvin, we are Varden Labs. I’ve been programming since I was 13 years old. I was ranked as one of the top 20 programmers in Canada in high school, and most recently, I worked…
Why 70% of Millennials Are About to Quit Their Jobs
What’s up, guys? It’s Graham here. So, one year ago, we were introduced to a topic that most people never expected. It was called the Great Resignation, where forty percent of workers thought about quitting their jobs, with “I quit” being the sign of an e…
Daily Live Homeroom With Sal: Wednesday, March 25
Hi everyone! Sal Khan here for our daily live stream. Just as a reminder of what this is for some of y’all who might be new: as the school closures have kind of rolled out around not just the country but the world, we realized that there’s a lot of demand…
TIL: A Bumblebee's Buzz Is Basically a Superpower | Today I Learned
All bees buzzed, but bumblebees are one of the very few types of bees that actually take that buzzing sound and use it like a secret weapon to get pollen. In fact, what the bumblebee is doing is sonication, or buzz pollination. It’s a technique that it’s …