yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What happens if you don’t put your phone in airplane mode? - Lindsay DeMarchi


3m read
·Nov 8, 2024

Right now, invisible signals are flying through the air all around you. Beyond the spectrum of light your eyes can see, massive radio waves as wide as houses carry information between computers, GPS systems, cell phones, and more. In fact, the signal your phone broadcasts is so strong, if your eyes could see radio waves, your phone would be visible from Jupiter. At least your special eyes would be able to see this if the sky wasn’t flooded with interference from routers, satellites, and, of course, people flying who haven't put their phones on airplane mode.

You see, this setting isn't to protect your flight, it's to protect everyone else in your flight path. Cell phones connect to networks by emitting information in the form of electromagnetic waves; specifically, radio waves, which occupy this band of the electromagnetic spectrum. These radio waves come in a range of wavelengths, and let’s imagine your special eyes see the various wavelengths as different colors. When you make a call, your phone generates a radio wave signal which it throws to the nearest cell tower. If you're far from service, your phone will expend more battery power to send a higher amplitude signal in an effort to make a connection.

Once connected, this signal is relayed between cell towers all the way to your call’s recipient. Since your call isn’t the only signal out here, cell towers managing the calls assign each phone involved their own wavelength. This specific color ensures you’re not picking up other people’s calls. It’s even slightly different from the wavelength your phone is receiving information on, so as not to interfere with that incoming signal. But there are only so many colors to choose from. And since the advent of Wi-Fi, the demand for ownership of these wavelengths has increased dramatically.

With all these signals in the air and a limited number of colors to assign, avoiding interference is increasingly difficult. Especially when cell towers receive too many signals at once, such as during regional emergencies, when everyone's trying to use their phones. But other sources of interference are more preventable, like phones searching for signals from thousands of meters in the sky. Phones on planes are very far from cell towers, so they work overtime to send the loudest signals they can in search of service.

But since planes travel so quickly, the phones might find themselves much closer to a cell tower than expected— blasting it with a massive signal that drowns out those on the ground. So when you fly without using airplane mode, you’re essentially acting as a military radio jammer— sending out giant radio waves that interfere with nearby signals. Even on the ground, almost all our electronics emit rogue radio waves, slowing down our internet and making our calls choppy. This leads consumers to pay for more bandwidth, pushing service providers to take over more of the radio spectrum, and eventually, send more satellites into the sky— creating a vicious cycle that could eventually blot out the stars.

Though, even without these satellites, this system is threatening our relationship with the cosmos. Radio telescopes used for astronomy rely on a specific band of wavelengths to see deep into space. However, while this range is supposedly protected, the cutoffs aren’t enforced. For example, the Very Large Array can see signals throughout our solar system from 1 to 50 GHz. But if it tries looking for signals below 5 GHz, its search could be drowned out by a sea of phones on 5G networks.

Today, nowhere on Earth is truly radio quiet. Satellites relaying signals around the globe have blanketed the planet in radio waves. But there are a few places with less crowded skies, where radio telescopes can look deep into space. Here, we can see the black hole at the center of the Milky Way and uncover the secrets of galaxies up to 96 billion light years away. Well, so long as we’re not blinded by phones sending signals from first class.

More Articles

View All
Line plots with fractions
What we’re going to do in this video is review what we know about line plots but apply them in a situation where some of our data involves fractions. So, they tell us the lengths of some caterpillars are shown below and so we can see that here in the line…
How to Stop Hating Yourself
Everyone has moments of dislike of themselves at some point in their lives. It could be because of something we’ve done, some aspect of our bodies, or maybe we believe we’re just not good enough. Whatever the reason, disliking ourselves means we’re not co…
This New Zealand Couple Is Charming—So Is Their Farming | Short Film Showcase
[Music] We shall have a cup of tea. They met in 1953, two young refugees over bickies and tea. We didn’t even say a word. Maybe you’re a bit too shy. It was love at first cup, with a wink and a smile. Faye and Joe Gok danced down the aisle. As Chinese we…
Scaling functions vertically: examples | Transformations of functions | Algebra 2 | Khan Academy
So we’re told this is the graph of function f right over here, and then they tell us that function g is defined as g of x is equal to one third f of x. What is the graph of g? If we were doing this on Khan Academy, this is a screenshot from our mobile app…
When Life Falls Apart, Does it Actually Fall Into Place? | A Buddhist Story
A man is chased by a tiger. Suddenly, he encounters an abandoned well. He jumps in, hoping that the tiger can’t reach him there. But then, he realizes that there’s a poisonous snake at the bottom of this dried-out well. Before he reaches the bottom, he gr…
Why I’m Never Going To Afford A Home
What’s up you guys! It’s Graham here. So put yourself in this position: you’ve graduated from college, you have $332,000 in student loan debt, and you are eventually able to land a job at $65,000. But over the next few years, the reality sets in: you’ll …