yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Applying the chain rule and product rule | Advanced derivatives | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

What we're going to do in this video is try to find the derivative with respect to X of (x^2 \sin(X)) all of that to the third power.

And what's going to be interesting is that there are multiple ways to tackle it. I encourage you to pause the video and see if you can work through it on your own. So, there's actually multiple techniques. One path is to do the chain rule first, so I'll just say CR for chain rule first.

So, I have I'm taking the derivative with respect to X of something to the third power. If I take the derivative, it would be the derivative with respect to that something, so that would be (3 \times) that something squared times the derivative with respect to X of that something, where the something in this case is (x^2 \sin(X)).

This is just an application of the chain rule. Now, the second part, what would that be? The second part here, just in another color, in orange, well here I would apply the product rule. I have the product of two expressions, so I would take the derivative of... let me write this down.

So this is going to be the product rule. I would take the derivative of the first expression. The derivative of (x^2) is (2x). Write a little bit to the right, it's going to be (2x \times) the second expression (\sin(X) +) the first expression (x^2 \times) the derivative of the second one (\cos(X)).

That's just the product rule as applied to this part right over here, and all of that, of course, is being multiplied by this up front, which actually, let me just rewrite that.

So, all of this I could rewrite as... let's see, this would be (3 \times) if I have the product of things raised to the second power, I could take each of them to the second power and then take their product. So (x^2) squared is (x^4) and (\sin^2(X)) is (\sin^2(X)), and then all of that is being multiplied by that.

And if we want, we can algebraically simplify. We can distribute everything out, in which case, what would we get? Well, let's see. (3 \times 2) is (6), (x^4 \times x) is (x^5), (\sin^2(X) \times \sin(X)) is (\sin^3(X)), and then let’s see, (3 \times x^4 \times x^2) is (x^6), and then I have (\sin^2(X) \cos(X)).

So there you have it. That's one strategy: chain rule first and then product rule. What would be another strategy? Pause the video and try to think of it. Well, we could just algebraically use our exponent properties first, in which case this is going to be equal to the derivative with respect to X of... if I'm taking (x^2 \cdot \sin(X)^3) instead, I could say (x^2) raised to the third power, which is going to be (x^6) and (\sin(X)) raised to the third power.

I'm using the same exponent property that we used right over here to simplify this. If I'm taking the product of things to some exponent, well, that's the same thing as each of them raised to the exponent and then the product of the two.

Now, how would we tackle this? Well, here I would do the product rule first, so let's do that. We're going to take the derivative of the first expression, so the derivative of (x^6) is (6x^5) times the second expression (\sin^3(X)) plus the first (x^6) times the derivative of the second.

And I'm just going to write that as (D(X) = \sin^3(X)). Now, to evaluate this right over here, it does definitely make sense to use the chain rule.

So, what is this going to be? Well, I have the derivative of something to the third power, so that's going to be (3 \times) that something squared times the derivative of that something. So in this case, the something is (\sin(X)) and the derivative of (\sin(X)) is (\cos(X)).

And then I have all of this business over here. I have (6x^5 \sin^3(X) + x^6), and if I were to just simplify this a little bit, in fact, you see it very clearly these two things are equivalent. This term is exactly equivalent to this term the way it's written.

And then this is exactly, if you multiply (3 \times x^6 \sin^2(X) \cos(X)), so the nice thing about math is if we're doing things that make logical sense, we should get to the same endpoint.

But the point here is that there are multiple strategies you could use: the chain rule first and then the product rule, or you could use the product rule first and then the chain rule.

In this case, you could debate which one is faster. It looks like the one on the right might be a little bit faster, but sometimes these two are pretty close.

But sometimes it'll be more clear than not which one is preferable. You really want to minimize the amount of hairiness, the number of steps, and the chances for careless mistakes you might have.

More Articles

View All
Whatever happened to acid rain? - Joseph Goffman
In 1963, scientists studying Hubbard Brook Experimental Forest in New Hampshire made a shocking discovery. Their most recent rainfall samples were nearly 100 times more acidic than usual. At these levels, additional downpours of acid rain would destroy th…
The Future of Driving | Years of Living Dangerously
TY BURRELL: Now that I’ve learned self-driving cars aren’t that far off, what about ride sharing? Are companies like Lyft and Uber going to be part of the solution? How you doing? All right? What are the odds? You are John Zimmer, President of Lyft. You g…
Media as a linkage institution | Political participation | US government and civics | Khan Academy
You have a government and you also have the people that are governed. In previous videos, we talked about this idea of linkage institutions, which are institutions that connect the government to the people and the people to the government. So, people know…
The Border Between Crocs and Humans | Explorer
The saltwater crocodile is among the fiercest hunters on the planet. This awe-inspiring prehistoric predator has the strongest animal bite ever recorded and can measure 20 feet long. No doubt it takes a certain breed of human to live in the salty’s habita…
Biosecurity Nightmare | To Catch a Smuggler: South Pacific | National Geographic
Auckland International Airport welcomes over 350,000 visitors from the USA every year. Many bring dreams of a wonderful holiday, but this woman has brought a biosecurity nightmare. “I’ve just seen the most incredible thing, a cat.” And the lady says, “It…
15 Things That Scream “I’m Low Class”
In Russia they’re called beadlow; in Australia they call them bogans; in Canada they’re called hosers; and in Germany they call them Kevin. Now really, they do. They like to say we live in a classless society, but we both know that’s not the case. Here ar…